(Ⅰ)因?yàn)閍
1=4,
an+1=an+p•3n+1,
所以
a2=a1+p•31+1=3p+5;
a3=a2+p•32+1=12p+6.
因?yàn)閍
1,a
2+6,a
3成等差數(shù)列,所以2(a
2+6)=a
1+a
3,
即6p+10+12=4+12p+6,所以p=2.
依題意,
an+1=an+2•3n+1,
所以當(dāng)n≥2時,
a2-a1=2•31+1,
a3-a2=2•32+1,
…
an-1-an-2=2•3n-2+1,
an-an-1=2•3n-1+1.
相加得
an-a1=2(3n-1+3n-2+…+32+3)+n-1,
所以
an-a1=2+(n-1),
所以
an=3n+n.
當(dāng)n=1時,
a1=31+1=4成立,
所以
an=3n+n.
(Ⅱ)證明:因?yàn)?span mathtag="math" >
an=
3n+n,所以
bn==.
因?yàn)?span dealflag="1" mathtag="math" >
bn+1-
bn=
-
=
,(n∈N
*).
若-2n
2+2n+1<0,則
n>,即n≥2時,b
n+1<b
n.
又因?yàn)?span mathtag="math" >
b1=
,
b2=,所以
bn≤.