分析 (I)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(II)利用等比數(shù)列的前n項和公式即可得出.
解答 解:(Ⅰ) 由已知Sn=2an-a3,有an=Sn-Sn-1=2an-2an-1(n≥2),
即an=2an-1(n≥2)從而a2=2a1,a3=2a2=4a1,
又∵a1,a2+1,a3成等差數(shù)列,即a1+a3=2(a2+1)
∴a1+4a1=2(2a1+1),解得a1=2.
∴數(shù)列{an}是首項為2,公比為2的等比數(shù)列,
故an=2n.
(Ⅱ)由(Ⅰ)得$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n}}$,
∴Tn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 一定是銳角三角形 | |
| B. | 一定是直角三角形 | |
| C. | 一定是鈍角三角形 | |
| D. | 可能是銳角三角形,也可能是鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $-\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com