分析 (1)設(shè)三條中線為AD,BE,CF,三中線交于G點(diǎn),G是重心,由同底等高得到S△GBC=2S△GCD,S△GAC=2S△GCD,由此能證明△GBC,△GAC,△GAB的面積相等.
(2)設(shè)三條中線為AD,BE,CF,三中線交于G點(diǎn),G是重心,由S△GBC=S△GAC,S△GBC=2S△GCD,得到S△GAC=2S△GCD,由此能證明三角形頂點(diǎn)到重心的距離,等于重心到對(duì)邊中點(diǎn)的距離的2倍.
解答
(1)證明:設(shè)三條中線為AD,BE,CF,三中線交于G點(diǎn),G是重心,
則AG=2GD,CG=2GF,BG=2GE,
∵BD=CD,∴S△GBC=2S△GCD,
∵AG=2GD,∴S△GAC=2S△GCD,
∴S△GBC=S△GAC,
同理S△GAC=S△GAB,
∴△GBC,△GAC,△GAB的面積相等.
(2)證明:設(shè)三條中線為AD,BE,CF,三中線交于G點(diǎn),G是重心,
∵△GBC,△GAC,△GAB的面積相等,
∴S△GBC=S△GAC,
∵BD=CD,∴S△GBC=2S△GCD,
∴S△GAC=2S△GCD,
∵△AGC和△DGC在分別以AG和DG為底時(shí),高都是點(diǎn)C到邊AD的距離,
∴AG=2GD,同理可證CG=2GF,BG=2GE,
∴三角形頂點(diǎn)到重心的距離,等于重心到對(duì)邊中點(diǎn)的距離的2倍.
點(diǎn)評(píng) 本題考查三角形面積相等的證明,考查三角形重心定理的證明,是中檔題,解題時(shí)要注意三角形面積公式的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com