【題目】在四棱錐P-ABCD中,底面ABCD是梯形,AB∥DC,AD⊥DC,AB=AD=2,DC=3,平面PDC⊥平面ABCD,E在棱PC上且PE=2EC。
![]()
()證明:BE∥平面PAD;
(1)若ΔPDC是正三角形,求三棱錐P-DBE的體積。
【答案】(1) 見(jiàn)證明;(2) ![]()
【解析】
(1) 作EF∥DC交PD于點(diǎn)F,連接AF,利用PE=2EC可得FE=2,再利用AB∥DC即可證得四邊形ABEF為平行四邊形,問(wèn)題得證。
(2)利用平面PDC⊥平面ABCD及AD⊥DC即可證得:AD⊥平面PDC,利用體積轉(zhuǎn)化可得:
,再利用錐體體積計(jì)算公式即可得解。
(1)證明:作EF∥DC交PD于點(diǎn)F,連接AF,
![]()
因?yàn)镋在棱PC上且PE=2EC,
所以FE=
DC=2,
又因?yàn)锳B∥DC,AB=2,
所以AB∥FE,且AB=FE,
所以四邊形ABEF為平行四邊形,
從而有AF∥BE
又因?yàn)锽E
平面PAD,AF
平面PAD,
所以BE∥平面PAD
(2)因?yàn)槠矫鍼DC⊥平面ABCD,且交線為DC,AD⊥DC,AD
平面ABCD
所以AD⊥平面PDC.
因?yàn)镻E=2EC
所以![]()
即三棱錐P-DBE的體積為
。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定橢圓
.稱(chēng)圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)
的值域;
(2)若不等式
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍;
(3)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.則下列結(jié)論中:
![]()
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命題的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求
的最大值;
(2)若函數(shù)
有兩個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高中年級(jí)開(kāi)設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機(jī)抽取了5名學(xué)生的學(xué)分,用莖葉圖表示.
,
分別表示甲、乙兩班各自5名學(xué)生學(xué)分的標(biāo)準(zhǔn)差,則
_______
.(填“
”“<”或“=”)
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且曲線
與
恰有一個(gè)公共點(diǎn).
(Ⅰ)求曲線
的極坐標(biāo)方程;
(Ⅱ)已知曲線
上兩點(diǎn)
,
滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國(guó)古畫(huà),現(xiàn)收藏于中國(guó)臺(tái)北故宮博物院.該作品簡(jiǎn)介:院角的棗樹(shù)結(jié)實(shí)累累,小孩群來(lái)攀扯,枝椏不;蝿(dòng),粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤(pán)子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動(dòng)作,四人每人模仿一個(gè)動(dòng)作.若他們采用抽簽的方式來(lái)決定誰(shuí)模仿哪個(gè)動(dòng)作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
在區(qū)間
上是增函數(shù).
(1)求實(shí)數(shù)
的值組成的集合
;
(2)設(shè)關(guān)于
的方程
的兩個(gè)非零實(shí)根為
、
.試問(wèn):是否存在實(shí)數(shù)
,使得不等式
對(duì)任意
及
恒成立?若存在,求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com