【題目】“割圓術”是我國古代計算圓周率
的一種方法.在公元
年左右,由魏晉時期的數學家劉徽發(fā)明.其原理就是利用圓內接正多邊形的面積逐步逼近圓的面積,進而求
.當時劉微就是利用這種方法,把
的近似值計算到
和
之間,這是當時世界上對圓周率
的計算最精確的數據.這種方法的可貴之處就是利用已知的、可求的來逼近未知的、要求的,用有限的來逼近無窮的.為此,劉微把它概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這種方法極其重要,對后世產生了巨大影響,在歐洲,這種方法后來就演變?yōu)楝F在的微積分.根據“割圓術”,若用正二十四邊形來估算圓周率
,則
的近似值是( )(精確到
)(參考數據
)
![]()
A.
B.![]()
C.
D.![]()
科目:高中數學 來源: 題型:
【題目】某省確定從2021年開始,高考采用“
”的模式,取消文理分科,即“3”包括語文、數學、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取
名學生進行調查.
(1)已知抽取的
名學生中含男生110人,求
的值及抽取到的女生人數;
(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的
名學生進行問卷調杳(假定每名學生在這兩個科目中必須洗擇一個科目且只能選擇一個科目).下表是根據調查結果得到的
列聯表,請將列聯表補充完整,并判斷是否有
的把握認為選擇科目與性別有關?說明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計 |
男生 | 50 | ||
女生 | 30 | ||
總計 |
(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語文、數學、外語三科為必考科目,滿分各150分,另外考生還要依據想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取
名學生進行調查.
(1)已知抽取的
名學生中含男生55人,求
的值;
(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的
名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據調查結果得到的
列聯表. 請將列聯表補充完整,并判斷是否有 99%的把握認為選擇科目與性別有關?說明你的理由;
(3)在抽取到的女生中按(2)中的選課情況進行分層抽樣,從中抽出9名女生,再從這9名女生中抽取4人,設這4人中選擇“地理”的人數為
,求
的分布列及期望.
![]()
附:
,![]()
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
,且
在區(qū)間
上是增函數.
(1)求實數
的值組成的集合
;
(2)設函數
的兩個極值點為
、
,試問:是否存在實數
,使得不等式
對任意
及
恒成立?若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某兩名高三學生在連續(xù)9次數學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數學成績分析.
![]()
①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;
②根據甲同學成績折線圖提供的數據進行統(tǒng)計,估計該同學平均成績在區(qū)間
內;
③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;
④乙同學連續(xù)九次測驗成績每一次均有明顯進步.
其中正確的個數為( 。
A.
B.
C.
D.![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com