解:(1)點(diǎn)(a
n,a
n+1)在函數(shù)y=x+2的圖象上,∴a
n+1=a
n+2,
∴數(shù)列{a
n}是以首項(xiàng)為2公差為2的等差數(shù)列,
∴a
n=2+2(n-1)=2n;
(2)s
n=

=n(n+1),
則

=

=

-

,
∴

=(1-

)+(

-

)+…+(

-

)=1-

<1
分析:(1)點(diǎn)(a
n,a
n+1)代入直線方程可得a
n+1=a
n+2,則數(shù)列為等差數(shù)列,根據(jù)首項(xiàng)為2,公比為2寫(xiě)出通項(xiàng)公式即可;
(2)根據(jù)首項(xiàng)和公比寫(xiě)出等差數(shù)列的前n項(xiàng)和的公式s
n,并表示出

=

=

-

,,利用拆項(xiàng)法把

變?yōu)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/656.png' />-

,然后列舉出各項(xiàng),抵消可得證.
點(diǎn)評(píng):此題以一次函數(shù)為平臺(tái),考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)的和,是一道中檔題.學(xué)生證明時(shí)應(yīng)注意運(yùn)用拆項(xiàng)法進(jìn)行化簡(jiǎn).