欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.已知等差數(shù)列{an}滿足a3=5,a5+a7=22,等差數(shù)列{an}的前n項(xiàng)和Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)an和前n項(xiàng)和Sn
(Ⅱ)若bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (I)設(shè)等差數(shù)列{an}的公差為d,利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出;
(II)bn=2nan=(2n-1)•2n.利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,∵a3=5,a5+a7=22,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=5}\\{2{a}_{1}+10d=22}\end{array}\right.$,
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
Sn=n+$\frac{(n-1)n}{2}×2$=n2
(II)bn=2nan=(2n-1)•2n
∴數(shù)列{bn}的前n項(xiàng)和Tn=1×2+3×22+5×23…+(2n-1)•2n
2Tn=22+3×23+…+(2n-3)×2n+(2n-1)•2n+1
∴-Tn=2+2(22+23+…+2n)-(2n-1)•2n+1=$2×\frac{2({2}^{n}-1)}{2-1}$-2-(2n-1)•2n+1=(3-2n)•2n+1-4,
∴Tn=(2n-3)•2n+1+4.

點(diǎn)評 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知O為坐標(biāo)原點(diǎn),A,B兩點(diǎn)的坐標(biāo)均滿足不等式組$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$,設(shè)$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為θ,則sinθ的最大值為( 。
A.$\frac{1}{2}$B.$\frac{4\sqrt{65}}{65}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)空間直角坐標(biāo)系中A(1,0,0),B(0,1,0),C(1,1,0),則點(diǎn)P(x,y,3)到平面ABC的距離是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若4≤a≤8,0≤b≤2,則a+b的取值范圍是(  )
A.(4,10)B.[4,10]C.(6,8)D.[6,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}的通項(xiàng)公式為an=sin$\frac{nπ}{2}$-kn,數(shù)列{an}的前n項(xiàng)和為Sn,且{Sn}為遞減數(shù)列,則實(shí)數(shù)k的取值范圍為( 。
A.k>1B.$k>\frac{1}{3}$C.$k>\frac{1}{5}$D.$k>\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.橢圓$\frac{x^2}{2}+{y^2}$=1上一點(diǎn)P到右焦點(diǎn)的距離為$\frac{{\sqrt{2}}}{2}$,則點(diǎn)P到左準(zhǔn)線的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,△AF1F2的周長為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)A作直線l與橢圓C的另一個(gè)交點(diǎn)為B,若以AB為直徑的圓恰好過坐標(biāo)原點(diǎn)O,求證:$\frac{|\overrightarrow{OA}|•|\overrightarrow{OB}|}{|\overrightarrow{AB}|}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知兩直線l1:$\sqrt{3}x-y+2=0,{l_2}:\sqrt{3}$x-y-10=0截圓C所得的弦長均為2,則圓C的面積是10π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求關(guān)于x、y、z的方程組$\left\{\begin{array}{l}{(λ+3)x+y+2z=λ}\\{λx+(λ-1)y+z=2λ}\\{3(λ+1)x+λy+(λ+3)z=3λ}\end{array}\right.$有唯一解的充要條件,并把這個(gè)條件下的解求出來.

查看答案和解析>>

同步練習(xí)冊答案