【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
與燒開(kāi)一壺水所用時(shí)間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).
![]()
|
|
|
|
|
|
|
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中
,
.
(1)根據(jù)散點(diǎn)圖判斷,
與
哪一個(gè)更適宜作燒開(kāi)一壺水時(shí)間
關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于
的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)
與單位時(shí)間內(nèi)煤氣輸出量
成正比,那么
為多少時(shí)燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù)![]()
![]()
,…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,
為
的導(dǎo)函數(shù).
(1)討論
的單調(diào)性;
(2)若
,當(dāng)
時(shí),求證:
有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,a=2
,_______,求△ABC的周長(zhǎng)l的范圍.
在①
(﹣cos
,sin
),
(cos
,sin
),且![]()
,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x
)
,f(A)![]()
注:這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并對(duì)其進(jìn)行求解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
過(guò)原點(diǎn)且傾斜角為
.以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立坐標(biāo)系,曲線
的極坐標(biāo)方程為
.在平面直角坐標(biāo)系
中,曲線
與曲線
關(guān)于直線
對(duì)稱(chēng).
(Ⅰ)求曲線
的極坐標(biāo)方程;
(Ⅱ)若直線
過(guò)原點(diǎn)且傾斜角為
,設(shè)直線
與曲線
相交于
,
兩點(diǎn),直線
與曲線
相交于
,
兩點(diǎn),當(dāng)
變化時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
與燒開(kāi)一壺水所用時(shí)間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).
![]()
|
|
|
|
|
|
|
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中
,
.
(1)根據(jù)散點(diǎn)圖判斷,
與
哪一個(gè)更適宜作燒開(kāi)一壺水時(shí)間
關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)
與單位時(shí)間內(nèi)煤氣輸出量
成正比,那么
為多少時(shí)燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù)![]()
![]()
,…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
:
,圓
:
,動(dòng)圓
與圓
和圓
均內(nèi)切.
(1)求動(dòng)圓圓心
的軌跡
的方程;
(2)過(guò)點(diǎn)
的直線
與軌跡
交于
,
兩點(diǎn),過(guò)點(diǎn)
且垂直于
的直線交軌跡
于兩點(diǎn)
,
兩點(diǎn),求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的上頂點(diǎn)為A,右焦點(diǎn)為F,O是坐標(biāo)原點(diǎn),
是等腰直角三角形,且周長(zhǎng)為
.
(1)求橢圓的方程;
(2)若直線l與AF垂直,且交橢圓于B,C兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情后,為了支持企業(yè)復(fù)工復(fù)產(chǎn),某地政府決定向當(dāng)?shù)仄髽I(yè)發(fā)放補(bǔ)助款,其中對(duì)納稅額在
萬(wàn)元至
萬(wàn)元(包括
萬(wàn)元和
萬(wàn)元)的小微企業(yè)做統(tǒng)一方案.方案要求同時(shí)具備下列兩個(gè)條件:①補(bǔ)助款
(萬(wàn)元)隨企業(yè)原納稅額
(萬(wàn)元)的增加而增加;②補(bǔ)助款不低于原納稅額
(萬(wàn)元)的
.經(jīng)測(cè)算政府決定采用函數(shù)模型
(其中
為參數(shù))作為補(bǔ)助款發(fā)放方案.
(1)判斷使用參數(shù)
是否滿足條件,并說(shuō)明理由;
(2)求同時(shí)滿足條件①、②的參數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com