欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知函數(shù)f(x)和g(x)是兩個定義在區(qū)間M上的函數(shù),若對任意的x∈M,存在常數(shù)x0∈M,使的f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則稱f(x)與g(x)在區(qū)間M上是“相似函數(shù)”,若f(x)=2x3-3(a+1)x2+6ax+b與g(x)=x+$\frac{4}{x}$在區(qū)間[1,3]上是“相似函數(shù)”,則a,b的值分別是(  )
A.a=-2,b=0B.a=-2,b=-2C.a=2,b=0D.a=2,b=-2

分析 由題意求出函數(shù)g(x)的最小值,然后對函數(shù)f(x)求導(dǎo),進(jìn)一步得到其在[1,3]上的最小值求解.

解答 解:∵當(dāng)x∈[1,3]時,g(x)=x+$\frac{4}{x}$≥4,當(dāng)且僅當(dāng)x=2時取等號,
∴x0=2,g(x0)=4,
∵f′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a),
①當(dāng)a≤1時,∵x∈[1,3],∴f′(x)≥0,故f(x)在[1,3]上單調(diào)遞增,不合題意;
②當(dāng)a>1時,由f′(x)>0,得x<1或x>a,由f′(x)<0,得1<x<a,
故f(x)在(-∞,1)上單調(diào)遞增,在(1,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增,
依題意可得:a=2.
∴f(x)=2x3-9x2+12x+b,則f(2)=4+b=4,解得:b=0.
故選:C.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)值的求法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)f(x)是定義在整數(shù)集上的整值函數(shù),滿足下列4條性質(zhì):
(1)對任意x∈Z,0≤f(x)≤1996;
(2)對任意x∈Z,f(x+1997)=f(x);
(3)對任意x,y∈Z,f(xy)=f(x)f(y)(mod1997);
(4)f(2)=999.
已知這樣的函數(shù)存在且唯一,據(jù)此求滿足f(x)=1000的最小正整數(shù)x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個頂點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且雙曲線的離心率等于$\sqrt{5}$,則該雙曲線的方程為( 。
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1D.5x2-$\frac{5{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x=t分別與函數(shù)f(x)=ex+1的圖象及g(x)=2x-1的圖象相交于點(diǎn)A和點(diǎn)B,則|AB|的最小值為( 。
A.2B.3C.4-2ln2D.3-2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$,若$\overrightarrow b$⊥$\overrightarrow c$,則實(shí)數(shù)k的值等于( 。
A.$-\frac{3}{2}$B.$-\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y+2≥0}\\{x≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y}{x+1}$的取值范圍是(  )
A.[-2,0]B.(-∞,-2]∪[0,+∞)C.[0,2]D.(-∞,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線y2=6x的準(zhǔn)線方程是( 。
A.x=3B.x=-3C.x=$\frac{3}{2}$D.x=-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知P(x,y)在不等式組$\left\{\begin{array}{l}{y≤x}\\{x+y≤8}\\{y≥-1}\end{array}\right.$所確定的平面區(qū)域內(nèi),則z=2x+y的最大值為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知m,n為正整數(shù),且直線2x+(n-1)y-2=0與直線mx+ny+3=0互相平行,則2m+n的最小值為( 。
A.7B.9C.11D.16

查看答案和解析>>

同步練習(xí)冊答案