【題目】設(shè)函數(shù)
,曲線
在點(diǎn)
處的切線方程為
.
(1)求
的解析式;
(2)證明:曲線
上任一點(diǎn)處的切線與直線
和直線
所圍成的三角形面積為定值,并求此定值.
【答案】(1)
;(2)證明見解析.
【解析】解:(1)方程7x-4y-12=0可化為y=
x-3,
當(dāng)x=2時(shí),y=
.
又f′(x)=a+
,
于是
,解得![]()
故f(x)=x-
.
(2)證明:設(shè)P(x0,y0)為曲線上任一點(diǎn),由f′(x)=1+
知,曲線在點(diǎn)P(x0,y0)處的切線方程為y-y0=(1+
)·(x-x0),即y-(x0-
)=(1+
)(x-x0).
令x=0得,y=-
,從而得切線與直線x=0,交點(diǎn)坐標(biāo)為(0,-
).
令y=x,得y=x=2x0,從而得切線與直線y=x的交點(diǎn)坐標(biāo)為(2x0,2x0).
所以點(diǎn)P(x0,y0)處的切線與直線x=0,y=x所圍成的三角形面積為
|-
||2x0|=6.
曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,此定值為6.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中an=
(n∈N*),將數(shù)列{an}中的整數(shù)項(xiàng)按原來的順序組成數(shù)列{bn},則b2018的值為( )
A.5035
B.5039
C.5043
D.5047
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技創(chuàng)新公司在第一年年初購買了一臺(tái)價(jià)值昂貴的設(shè)備,該設(shè)備的第1年的維護(hù)費(fèi)支出為20萬元,從第2年到第6年,每年的維修費(fèi)增加4萬元,從第7年開始,每年維修費(fèi)為上一年的125%.
(1)求第n年該設(shè)備的維修費(fèi)
的表達(dá)式;
(2)設(shè)
,若
萬元,則該設(shè)備繼續(xù)使用,否則須在第n年對(duì)設(shè)備更新,求在第幾年必須對(duì)該設(shè)備進(jìn)行更新?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,圓
的參數(shù)方程為
,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),
軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,
兩點(diǎn)的極坐標(biāo)分別為.![]()
(1)求圓
的普通方程和直線
的直角坐標(biāo)方程;
(2)點(diǎn)
是圓
上任一點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題只理科做,滿分14分)如圖,已知
平面
,
,△
是正三角形,
,且
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求平面
與平面
所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題一定正確的是( )
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a
,則ap , ar , aq成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī),得到如下所示的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 |
| |
乙班 |
| 30 | |
總計(jì) |
|
已知在全部105人中隨機(jī)抽取1人,成績(jī)優(yōu)秀的概率為
,則下列說法正確的是( )
A. 列聯(lián)表中
的值為30,
的值為35
B. 列聯(lián)表中
的值為15,
的值為50
C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按
的可靠性要求,能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按
的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,an+12=Sn+1+Sn .
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=a2n﹣1
, 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)
為偶函數(shù).
(1)求
的解析式;
(2)若函數(shù)
在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com