分析 (1)已知(b2+c2-a2)tanA=$\sqrt{3}$bc,由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{2tanA}$化簡(jiǎn)整理即可得出;
(2)利用倍角公式、和差公式可得:f(B)=$sin(2B-\frac{π}{3})$+$\frac{\sqrt{3}}{2}$,0<$C=\frac{2π}{3}-B<\frac{π}{2}$,$0<B<\frac{π}{2}$,可得$\frac{π}{6}<B<\frac{π}{2}$,$(2B-\frac{π}{3})$∈$(0,\frac{2π}{3})$.因此$sin(2B-\frac{π}{3})$∈(0,1],即可得出.
解答 解:(1)∵(b2+c2-a2)tanA=$\sqrt{3}$bc,∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{2tanA}$,∴sinA=$\frac{\sqrt{3}}{2}$,∵A∈$(0,\frac{π}{2})$,∴$A=\frac{π}{3}$.
(2)∵f(B)=sinBcosB-$\sqrt{3}{cos^2}B+\sqrt{3}$=$\frac{1}{2}sin2B-\sqrt{3}×\frac{1+cosB}{2}$+$\sqrt{3}$=$sin(2B-\frac{π}{3})$+$\frac{\sqrt{3}}{2}$,
∵0<$C=\frac{2π}{3}-B<\frac{π}{2}$,$0<B<\frac{π}{2}$,∴$\frac{π}{6}<B<\frac{π}{2}$,∴$(2B-\frac{π}{3})$∈$(0,\frac{2π}{3})$.
∴$sin(2B-\frac{π}{3})$∈(0,1],
∴f(B)∈$(\frac{\sqrt{3}}{2},1+\frac{\sqrt{3}}{2}]$.
點(diǎn)評(píng) 本題考查了余弦定理的應(yīng)用、和差公式、倍角公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{13}{6}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com