(本小題共16分)已知
.
(1)若函數(shù)
在區(qū)間
上有極值,求實(shí)數(shù)
的取值范圍;
(2)若關(guān)于
的方程
有實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
,
時,求證:
.
解:(1)
,
當(dāng)
時,
;當(dāng)
時,
;
函數(shù)
在區(qū)間(0,1)上為增函數(shù);在區(qū)間
為減函數(shù) -------------------------3分
當(dāng)
時,函數(shù)
取得極大值,而函數(shù)
在區(qū)間
有極值.
![]()
,解得
.
---------------------------5分
(2)由(1)得
的極大值為
,令
,所以當(dāng)
時,函數(shù)
取得最小值
,又因為方程
有實(shí)數(shù)解,那么
,即
,所以實(shí)數(shù)
的取值范圍是:
.
----------10分
(另解:
,
,
令![]()
,所以![]()
![]()
,當(dāng)
時,![]()
當(dāng)
時,
;當(dāng)
時,![]()
當(dāng)
時,函數(shù)
取得極大值為![]()
當(dāng)方程
有實(shí)數(shù)解時,
.)
(3)
函數(shù)
在區(qū)間
為減函數(shù),而
,![]()
,即
![]()
--------------12分
即
,而
,
結(jié)論成立.
----------------------16分
【解析】略
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期數(shù)學(xué)綜合練習(xí)(1) 題型:解答題
(本小題共16分)已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動點(diǎn)
在直線
上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以O(shè)M為直徑且被直線
截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N.求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題
(本小題共16分)
已知M(p, q)為直線x+y-m=0與曲線y=-的交點(diǎn),且p<q,若f(x)=,λ、μ為正實(shí)數(shù)。求證:|f()-f()|<|p-q|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題
(本小題共16分)
已知M(p, q)為直線x+y-m=0與曲線y=-的交點(diǎn),且p<q,若f(x)=,λ、μ為正實(shí)數(shù)。求證:|f()-f()|<|p-q|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三學(xué)情調(diào)查數(shù)學(xué)試卷 題型:解答題
(本小題共16分)
已知M(p, q)為直線x+y-m=0與曲線y=-的交點(diǎn),且p<q,若f(x)=,λ、μ為正實(shí)數(shù)。求證:|f()-f()|<|p-q|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com