(本題滿分12分)已知函數(shù)
的圖象過點(diǎn)
,且在點(diǎn)
處的切線方程為
.
(Ⅰ)求函數(shù)
的解析式;(Ⅱ)求函數(shù)
的單調(diào)區(qū)間.
(Ⅰ)
(Ⅱ)單調(diào)增區(qū)間:
,單調(diào)減區(qū)間:![]()
【解析】
試題分析:(Ⅰ)由
的圖象經(jīng)過
,知
,
所以
.
所以
.
……2分
由于函數(shù)
在點(diǎn)
處的切線方程是
,
∴![]()
![]()
故所求函數(shù)的解析式是
.
……6分
(Ⅱ)
.
解得
.當(dāng)
;
當(dāng)
.
故
內(nèi)是增函數(shù),在
內(nèi)是減函數(shù),
在
內(nèi)是增函數(shù).
……12分
考點(diǎn):本小題主要考查函數(shù)的求導(dǎo)、導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查學(xué)生的知識(shí)運(yùn)用能力和運(yùn)算求解能力.
點(diǎn)評(píng):寫函數(shù)的單調(diào)區(qū)間時(shí),兩個(gè)單調(diào)增區(qū)間或兩個(gè)單調(diào)減區(qū)間之間只能用逗號(hào)隔開,不能把兩個(gè)區(qū)間并起來.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本題滿分12分)已知△
的三個(gè)內(nèi)角
、
、
所對(duì)的邊分別為
、
、
.
,且
.(1)求
的大;(2)若
.求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列
,
的等比中項(xiàng)。
(1)求證:數(shù)列
是等差數(shù)列;(2)若
的前n項(xiàng)和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓
:
的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
倍,
,
是它的左,右焦點(diǎn).
(1)若
,且
,
,求
、
的坐標(biāo);
(2)在(1)的條件下,過動(dòng)點(diǎn)
作以
為圓心、以1為半徑的圓的切線
(
是切點(diǎn)),且使
,求動(dòng)點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知橢圓
的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量
與
是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點(diǎn),
分別是左右焦點(diǎn),求
的取值范圍
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com