| A. | $\frac{\sqrt{3}}{10}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{3}{5}$ |
分析 tanx=$\frac{1}{3}$,sin2x=2sinxcosx=$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2tanx}{ta{n}^{2}x+1}$,即可得出.
解答 解:∵tanx=$\frac{1}{3}$,
則sin2x=2sinxcosx=$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2tanx}{ta{n}^{2}x+1}$=$\frac{2×\frac{1}{3}}{1+(\frac{1}{3})^{2}}$=$\frac{3}{5}$.
故選:D.
點(diǎn)評 本題考查了同角三角函數(shù)基本關(guān)系式、“弦化切”,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {an}是以q(q≠1)為公比的等比數(shù)列,則a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$ | |
| B. | 若n∈N*,則cos$\frac{α}{2}$•cos$\frac{α}{{2}^{2}}$•cos$\frac{α}{{2}^{3}}$…cos$\frac{α}{{2}^{n}}$=$\frac{sinα}{{2}^{n}sin\frac{α}{{2}^{n}}}$ | |
| C. | 若n∈N*,則n2+3n+1是質(zhì)數(shù) | |
| D. | (n2-1)+22(n2-22)+…+n2(n2-n2)=$\frac{{n}^{2}(n-1)(n+1)}{4}$對任何n∈N*都成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{5}{2}$ | B. | $\frac{5}{2}$ | C. | -$\frac{5}{4}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{6}$ | B. | $\root{2}{6}$ | C. | 6 | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{y-{y}_{1}}{x-{x}_{1}}$=k為過點(diǎn)P(x1,y1)且斜率為k的直線方程 | |
| B. | 過y軸上一點(diǎn)(0,b)得直線方程可以表示為y=kx+b | |
| C. | 若直線在x軸、y軸的截距分別為a與b,則該直線方程為$\frac{x}{a}$+$\frac{y}$=1 | |
| D. | 方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示過兩點(diǎn)P(x1,y1)、Q(x2,y2)一條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com