欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知函數(shù)f(x)=ln(ex)-kx.
(1)求f(x)的單調(diào)區(qū)間;
(2)若?x∈(0,+∞),都有f(x)≤0,求實數(shù)k的取值范圍;
(3)證明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{n(n-1)}{4}$(n∈N*,且n≥2).

分析 (Ⅰ)由函數(shù)f(x)的定義域為(0,+∞),f′(x)=$\frac{e}{x}$-k.能求出函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)由(1)知k≤0時,f(x)在(0,+∞)上是增函數(shù),而f(1)=1-k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值為f($\frac{1}{k}$),由此能確定實數(shù)k的取值范圍.
(Ⅲ)由(2)知,當k=1時,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是減函數(shù),f(1)=0,即lnx<x-1在x∈[2,+∞)上恒成立,由此能夠證明 $\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{n(n-1)}{4}$((n∈N*且n>1).

解答 解:(Ⅰ)易知f(x)的定義域為(0,+∞),
又f′(x)=$\frac{1}{x}$-k=$\frac{1-kx}{x}$,
k>0時,令f′(x)>0,解得:x<$\frac{1}{k}$,令f′(x)<0,解得:x>$\frac{1}{k}$,
∴f(x)在(0,$\frac{1}{k}$)遞增,在($\frac{1}{k}$,+∞)遞減;
k≤0時,f′(x)>0在(0,+∞)恒成立,
(Ⅱ)當k≤0時,f(1)=1-k>0,不成立,
故只考慮k>0的情況
又f′(x)=$\frac{1}{x}$-k
當k>0時,當0<x<$\frac{1}{k}$時,f′(x)>0;
當x>$\frac{1}{k}$時,f′(x)<0
在(0,$\frac{1}{k}$)上是增函數(shù),在($\frac{1}{k}$,+∞)時減函數(shù),
此時f(x)max=f($\frac{1}{k}$)=-lnk
要使f(x)≤0恒成立,只要-lnk≤0 即可
解得:k≥1.
(Ⅲ)當k=1時,
有f(x)≤0在(0,+∞)恒成立,
且f(x)在(1,+∞)上是減函數(shù),f(1)=0,
即lnx<x-1在x∈(1,+∞)上恒成立,
令x=n2,則lnn2<n2-1,
即2lnn<(n-1)(n+1),
∴$\frac{lnn}{n+1}$<$\frac{n-1}{2}$(n∈N*且n>1)
∴$\frac{ln2}{3}$+$\frac{ln3}{4}$+$\frac{ln4}{5}$+…+$\frac{lnn}{n+1}$<$\frac{1}{2}$+$\frac{2}{2}$+$\frac{3}{2}$+…+$\frac{n-1}{2}$=$\frac{n(n-1)}{4}$,
即:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{n(n-1)}{4}$(n∈N*且n>1)成立.

點評 本題考查函數(shù)單調(diào)區(qū)間的求法,確定實數(shù)的取值范圍,不等式的證明.考查化歸與轉化、分類與整合的數(shù)學思想,培養(yǎng)學生的抽象概括能力、推理論證能力、運算求解能力和創(chuàng)新意識.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知:$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow$=($\sqrt{3}$cosx,2cosx),設函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$-$\sqrt{3}$(x∈R)求:
(1)f(x)的最小正周期及最值;
(2)f(x)的對稱軸及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.一個四面體的頂點在空間直角坐標系O-xyz中的坐標分別是(2,0,2),(2,2,0),(0,2,2),(1,0,0),畫該四面體三視圖中的主視圖時,以zOx平面為投影面,則得到主視圖可以為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,三棱柱中ABC-A1B1C1中,點A1在平面ABC內(nèi)的射影D為棱AC的中點,側面A1ACC1為邊長為2的菱形,AC⊥CB,BC=1.
(Ⅰ)證明:AC1⊥平面A1BC;
(Ⅱ)求三棱錐B-A1B1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.橢圓$\left\{\begin{array}{l}x=4cosθ\\ y=5sinθ\end{array}$(θ為參數(shù))的長軸長為( 。
A.4B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(2a+1)x+21nx(a∈R).
(1)當a=$\frac{2}{3}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a>$\frac{1}{2}$時,設g(x)=(x2-2x)ex.求證;對任意x1∈(0,2],均存在∈(0,2],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知三棱錐S-ABC的各個頂點都在一個半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=$\sqrt{2}$r,則球的體積與三棱錐體積之比是4π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖所示的幾何體A1B1C1D1-ABCD中,平面A1B1C1D1∥平面ABCD,A1B1C1D1是邊長為2的正方形,ABCD是矩形,AD=5,AA1B1B是矩形,A1A⊥平面ABCD,E為AD上的一點,AE=1.
(1)證明:平面B1CE⊥平面B1BE.
(2)設二面角B-B1C-E的平面角為θ,若cosθ=$\frac{\sqrt{6}}{3}$,求幾何體A1B1C1D1-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點,過F1且垂直于x軸的直線交橢圓于P,Q兩點,若△PQF2為正三角形,則橢圓的離心率是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步練習冊答案