欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.

分析 (1)利用組合數(shù)公式計(jì)算概率;
(2)使用超幾何分布的概率公式計(jì)算概率,得出分布列,再計(jì)算數(shù)學(xué)期望.

解答 解:(I)記接受甲種心理暗示的志愿者中包含A1但不包含B1的事件為M,
則P(M)=$\frac{{C}_{8}^{4}}{{C}_{10}^{5}}$=$\frac{5}{18}$.
(II)X的可能取值為:0,1,2,3,4,
∴P(X=0)=$\frac{{C}_{6}^{5}}{{C}_{10}^{5}}$=$\frac{1}{42}$,
P(X=1)=$\frac{{{C}_{6}^{4}C}_{4}^{1}}{{C}_{10}^{5}}$=$\frac{5}{21}$,
P(X=2)=$\frac{{{C}_{6}^{3}C}_{4}^{2}}{{C}_{10}^{5}}$=$\frac{10}{21}$,
P(X=3)=$\frac{{{C}_{6}^{2}C}_{4}^{3}}{{C}_{10}^{5}}$=$\frac{5}{21}$,
P(X=4)=$\frac{{{C}_{6}^{1}C}_{4}^{4}}{{C}_{10}^{5}}$=$\frac{1}{42}$.
∴X的分布列為

 X 0 1 2 3 4
 P $\frac{1}{42}$ $\frac{5}{21}$ $\frac{10}{21}$ $\frac{5}{21}$ $\frac{1}{42}$
X的數(shù)學(xué)期望EX=0×$\frac{1}{42}$+1×$\frac{5}{21}$+2×$\frac{10}{21}$+3×$\frac{5}{21}$+4×$\frac{1}{42}$=2.

點(diǎn)評(píng) 本題考查了組合數(shù)公式與概率計(jì)算,超幾何分布的分布列與數(shù)學(xué)期望,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=3,S4=10,則 $\sum_{k=1}^{n}$$\frac{1}{{S}_{k}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測(cè)量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:
抽取次序12345678
零件尺寸9.9510.129.969.9610.019.929.9810.04
抽取次序910111213141516
零件尺寸10.269.9110.1310.029.2210.0410.059.95
經(jīng)計(jì)算得 $\overline{x}$=$\frac{1}{16}$$\sum_{i=1}^{16}$xi=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})$≈0.212,$\sqrt{\sum_{i=1}^{16}(i-8.5)^{2}}$≈18.439,$\sum_{i=1}^{16}$(xi-$\overline{x}$)(i-8.5)=-2.78,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ魘r|<0.25,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在($\overline{x}$-3s,$\overline{x}$+3s)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)從這一天抽檢的結(jié)果看,是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?
(ⅱ)在($\overline{x}$-3s,$\overline{x}$+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)
附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+3≤0}\\{3x+y+5≤0}\\{x+3≥0}\end{array}\right.$,則z=x+2y的最大值是(  )
A.0B.2C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(1+3x)n的展開式中含有x2的系數(shù)是54,則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},則(A∪B)∩C=( 。
A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|-1≤x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+3,x≤1}\\{x+\frac{2}{x},x>1}\end{array}$,設(shè)a∈R,若關(guān)于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,則a的取值范圍是( 。
A.[-$\frac{47}{16}$,2]B.[-$\frac{47}{16}$,$\frac{39}{16}$]C.[-2$\sqrt{3}$,2]D.[-2$\sqrt{3}$,$\frac{39}{16}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,點(diǎn)A在雙曲線的漸近線上,△OAF是邊長(zhǎng)為2的等邊三角形(O為原點(diǎn)),則雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2lnx-ax,g(x)=x2
(1)若函數(shù)f(x)在(2,f(2))處的切線與函數(shù)g(x)在(2,g(2))處的切線互相平行,求實(shí)數(shù)a的值;
(2)設(shè)函數(shù)H(x)=f(x)-g(x).
(ⅰ)當(dāng)實(shí)數(shù)a≥0時(shí),試判斷函數(shù)y=H(x)在[1,+∞]上的單調(diào)性;
(ⅱ)如果x1,x2(x1<x2)是H(x)的兩個(gè)零點(diǎn),H'(x)為函數(shù)H(x)的導(dǎo)函數(shù),證明:$H'(\frac{{{x_1}+{x_2}}}{2})<0$.

查看答案和解析>>

同步練習(xí)冊(cè)答案