分析 (1)以點(diǎn)D為坐標(biāo)原點(diǎn),分別以DA,DC,DF所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用向量法能求出異面直線BD與EF所成角的大。
(2)連結(jié)AE,取中點(diǎn)為G,連結(jié)GA,GB,GC,GD,GE,得到DG長(zhǎng)為所求球的半徑,由此能求出過(guò)A、B、C、D、E這五個(gè)點(diǎn)的球的表面積.
解答 解:(1)以點(diǎn)D為坐標(biāo)原點(diǎn),分別以DA,DC,DF所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,![]()
D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),E(0,1,1),F(xiàn)(0,0,2)
$\overrightarrow{DB}$=(1,1,0),$\overrightarrow{EF}$=(0,-1,1),
設(shè)異面直線BD與EF所成角為θ,
則cosθ=$\frac{|\overrightarrow{DB}•\overrightarrow{EF}|}{|\overrightarrow{DB}|•|\overrightarrow{EF}|}$=$\frac{1}{2}$,
∴$θ=\frac{π}{3}$,
∴異面直線BD與EF所成角的大小為$\frac{π}{3}$.
(2)連結(jié)AE,取中點(diǎn)為G,連結(jié)GA,GB,GC,GD,GE,
由已知得GA=GB=GC=GD=GE,
所以DG長(zhǎng)為所求球的半徑,
G($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$),$\overrightarrow{DG}$=($\frac{1}{2},\frac{1}{2},\frac{1}{2}$),
∴r=|$\overrightarrow{DG}$|=$\sqrt{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}$=$\frac{\sqrt{3}}{2}$.
∴過(guò)A、B、C、D、E這五個(gè)點(diǎn)的球的表面積:
S=$4π{r}^{2}=4π×(\frac{\sqrt{3}}{2})^{2}$=3π.
點(diǎn)評(píng) 本題考查異面直線所成角的大小的求法,考查球的表面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{4}$] | C. | (-∞,0)∪($\frac{1}{2}$,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ($\frac{1}{a}$,0) | B. | ($\frac{1}{2a}$,0) | ||
| C. | ($\frac{1}{4a}$,0) | D. | a>0 時(shí)為($\frac{1}{4a}$,0),a<0 時(shí)為(-$\frac{1}{4a}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 極大值為6,極大值為-26 | B. | 極大值為5,極大值為-26 | ||
| C. | 極大值為6,極大值為-25 | D. | 極大值為5,極大值為-25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1)(2) | B. | (1) | C. | (2)(3) | D. | (1)(2)(3) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com