分析 △FAB面積等于△AOF 和△BOF 的面積之和,設(shè)A到x軸的距離為 h,則△FAB面積等于$\frac{1}{2}$×c×2h=ch,由此能求出△FAB面積的最大值.
解答
解:∵AB是過橢圓b2x2+a2y2=a2b2的中心弦,F(xiàn)(c,0)為它的右焦點,
∴橢圓b2x2+a2y2=a2b2的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1,(a>b>0),
∴△FAB面積等于△AOF 和△BOF 的面積之和,
設(shè)A到x軸的距離為 h,由AB為過橢圓中心的弦,則B到x軸的距離也為 h,
∴△AOF 和△BOF 的面積相等,
∴△FAB面積等于$\frac{1}{2}$×c×2h=ch,又h的最大值為b,
∴△FAB面積的最大值是bc,
故答案為:bc.
點評 本題考查三角形面積的最大值的求法,是中檔題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 16 | B. | 4 | C. | $\frac{1}{16}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | -1 | C. | 0 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{21}{2}$ | B. | 21 | C. | $\frac{39}{2}$ | D. | $\frac{39}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{9π}{2}$ | B. | 36π | C. | 9π | D. | $\frac{3}{2}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com