分析 (I)根據(jù)式子的開(kāi)始項(xiàng)和最后一項(xiàng)及右邊特點(diǎn)得出;
(II)驗(yàn)證n=1猜想是否成立,再假設(shè)n=k成立,推導(dǎo)n=k+1成立即可.
解答 (I)解:第6個(gè)式子為6+7+8+9+…+16=121.
(II)猜想:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,
證明:(1)當(dāng)n=1時(shí),猜想顯然成立;
(2)假設(shè)n=k時(shí),猜想成立,即k+(k+1)+(k+2)+…+(3k-2)=(2k-1)2,
則當(dāng)n=k+1時(shí),(k+1)+(k+2)+(k+3)+…+(3k-2)+(3k-1)+3k+(3k+1)
=(2k-1)2-k+(3k-1)+3k+(3k+1)=4k2+4k+1=(2k+1)2=[2(k+1)-1]2,
∴當(dāng)n=k+1時(shí),猜想成立.
所以,對(duì)于任意n∈N+,猜想都成立.
點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法證明,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | -3 | C. | 3i | D. | -3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com