欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知tanα=$\frac{1}{3}$,tan(β-α)=-2,且$\frac{π}{2}$<β<π,則β=$\frac{3π}{4}$.

分析 根據(jù)題意,分析可得β=α+(β-α),進而由正切的和角公式可得tanβ=$\frac{tanα+tan(β-α)}{1-tanαtan(β-α)}$,代入數(shù)據(jù)可得tanβ=-1,又由β的范圍,可得β的值,即可得答案.

解答 解:根據(jù)題意,β=α+(β-α),
則tanβ=$\frac{tanα+tan(β-α)}{1-tanαtan(β-α)}$=$\frac{\frac{1}{3}+(-2)}{1-\frac{1}{3}×(-2)}$=-1,
又由$\frac{π}{2}$<β<π,則β=$\frac{3π}{4}$;
故答案為:$\frac{3π}{4}$.

點評 本題考查正切的和差公式,注意將(β-α)作為一個整體,可以簡化計算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知tanα、cotα是關(guān)于x的方程2x2-2kx=3-k2的兩個方程根,π<α<$\frac{5}{4}$π,求cosα-sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知α,β∈(0,$\frac{π}{2}$),sin(α-β)=-$\frac{1}{4}$,sinβ=$\frac{1}{3}$,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)過點(2,-$\sqrt{3}$),左頂點為A,離心率為$\frac{\sqrt{3}}{2}$.
(I)求橢圓Γ的方程;
(Ⅱ)證明:不存在過點A且與橢圓Γ交于點B、與圓Ω:x2+y2=16交于點C的直線l,使得|BC|=3|AB|,其中B、C不同于點A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)y=-3sin2x+9sinx+$\frac{5}{4}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某學(xué)校舉辦了一個答題活動,參賽的學(xué)生需要回答三個問題.其中兩個是判斷題,另一個是有三個選項的單項選擇題,設(shè)ξ為回答正確的題數(shù),則E(ξ)的值為( 。
A.1B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0)的兩個焦點為F1(-c,0),F(xiàn)2(c,0).其短軸長是2$\sqrt{3}$,原點O到過點A(a,0)和B(0,-b)兩點的直線的距離為$\frac{2\sqrt{21}}{7}$.
(I)求橢圓C的方程;
(II)若點PQ是定直線x=4上的兩個動點,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}Q}$=0,證明以PQ為直徑的圓過定點,并求定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,若存在過右焦點F的直線與雙曲線C相交于A、B兩點,且$\overrightarrow{AF}$=3$\overrightarrow{BF}$,則雙曲線C的離心率的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2011年,國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源是中國古代數(shù)學(xué)家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動中,設(shè)計了如下有獎闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得5個學(xué)豆、10個學(xué)豆、20個學(xué)豆的獎勵,游戲還規(guī)定,當(dāng)選手闖過一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲第一關(guān)、第二關(guān)、第三關(guān)的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選手選擇繼續(xù)闖關(guān)的概率均為$\frac{1}{2}$,且各關(guān)之間闖關(guān)成功與否互不影響
(I)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率
(Ⅱ)設(shè)該學(xué)生所得學(xué)豆總數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案