欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(1)已知函數(shù)f(x)=ln(1+x)-
ax
x+1
(其中a為常數(shù)),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:不等式
1
ln(x+1)
-
1
x
1
2
在0<x<1上恒成立.
(1)由f(x)=ln(1+x)-a(1-
1
x+1
)
知定義域:{x|x>-1}
對f(x)求導(dǎo)得:f′(x)=
1
1+x
-
a
(x+1)2
=
x+1-a
(x+1)2

①在a≤0時,有x+1-a>0恒成立.故f(x)>0
故此時f(x)在(-1,+∞)上單調(diào)遞增
②在a>0時,由f'(x)=0知x=a-1
x (-1,a-1) a-1 (a-1,+∞)
f'(x) - 0 +
f(x) 極小值
故在a>0時,f(x)在(-1,a-1)上為減函數(shù),在[a-1,+∞)上為增函數(shù).
因此函數(shù)在a≤0時,在(-1,+∞)上單調(diào)遞增;在a>0時,f(x)在(-1,a-1)上為減函數(shù),在[a-1,+∞)上為增函數(shù).…(5分)
(2)要證明:
1
ln(1+x)
-
1
x
1
2
在(0,1)上成立.
只需證:
x
2
ln(1+x)+ln(1+x)-x>0
,在(0,1)上恒成立
設(shè)g(x)=
x
2
ln(1+x)+ln(1+x)-x

g′(x)=
1
2
(ln(1+x)+x.
1
1+x
)+
1
x+1
-1
=
1
2
(ln(1+x)-
x
1+x
)

由(1)可知a=1,f(x)在x=0時取到最小值
ln(1+x)>
x
1+x
,在x>0時恒成立.
從而可知g'(x)>0,故g(x)在(0,1)上為增函數(shù)∴g(x)>g(0)=0
即:
x
2
ln(1+x)+ln(1+x)-x>0
恒成立,從而原不等式得證.…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題:(1)已知函數(shù)f(x)=x+
p
x-1
(p為常數(shù)且p>0),若f(x)在區(qū)間(1,+∞)的最小值為4,則實(shí)數(shù)p的值為
9
4
; (2)?x∈[0,
π
2
],sinx+cosx>
2
;(3)正項(xiàng)等比數(shù)列{an}中:a4.a(chǎn)6=8,函數(shù)f(x)=x(x+a3)(x+a5)(x+a7),則f(0)=16
2
;(4)若數(shù)列{an}的前n項(xiàng)和為Sn=2n2-n+1,且bn=2an+1,則數(shù)列{bn}前n項(xiàng)和為Tn=4n2-n+2上述命題正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=sin(
1
2
x+
π
4
)
,求函數(shù)在區(qū)間[-2π,2π]上的單調(diào)增區(qū)間;
(2)計(jì)算:tan70°cos10°(
3
tan20°-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D(其中a<b),使當(dāng)x∈[a,b]時,
f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=
x
是[0,+∞)上的正函數(shù),試求f(x)的等域區(qū)間.
(2)試探究是否存在實(shí)數(shù)k,使函數(shù)g(x)=x2+k是(-∞,0)上的正函數(shù)?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

問題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們?nèi)舭衙恳粋函數(shù)值計(jì)算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是實(shí)數(shù),f(x)=a-
2
1+2x
(x∈R)

(1)已知函數(shù)f(x)=a-
2
1+2x
(x∈R)
是奇函數(shù),求實(shí)數(shù)a的值.
(2)試證明:對于任意實(shí)數(shù)a,f(x)在R上為增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案