分析 求出△ABC所在圓面的半徑為$\frac{1}{2}AC=5$,則由$\frac{1}{3}×\frac{1}{2}×6×8h=40\sqrt{3}$得三棱錐的高h(yuǎn)=5$\sqrt{3}$,設(shè)球O的半徑為R,則由h2+52=R2,得R=10,
解答 解:依題意知△ABC為直角三角形,其所在圓面的半徑為$\frac{1}{2}AC=5$,
設(shè)三棱錐O-ABC的高為h,則由$\frac{1}{3}×\frac{1}{2}×6×8h=40\sqrt{3}$得h=5$\sqrt{3}$,
設(shè)球O的半徑為R,則由h2+52=R2,得R=10,故該球的表面積為400π.
故答案為400π.
點(diǎn)評(píng) 本題考查了三棱錐外接球的表面積,求出求得半徑是關(guān)鍵,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1≥0 | |
| B. | “x=1”是“x2-4x+3=0”的充分不必要條件 | |
| C. | 命題“若x2-4x+3=0,則x=1”的逆否命題為“若x≠1,則x2-4x+3≠0” | |
| D. | 若p∧q為假命題,則p、q均為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4條 | B. | 3條 | C. | 2條 | D. | 1條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (6,+∞) | B. | [6,+∞) | C. | (3,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {0} | B. | {0,2,4} | C. | {2,4} | D. | {0,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com