欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知三棱錐S-ABC,滿足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,若該三棱錐外接球的半徑為$\sqrt{3}$,Q是外接球上一動(dòng)點(diǎn),則點(diǎn)Q到平面ABC的距離的最大值為$\frac{{4\sqrt{3}}}{3}$.

分析 由題意,三棱錐的外接球即為以SA,SB,SC為長(zhǎng)寬高的正方體的外接球,求出球心到平面ABC的距離,即可求出點(diǎn)Q到平面ABC的距離的最大值.

解答 解:∵三棱錐S-ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,
∴三棱錐的外接球即為以SA,SB,SC為長(zhǎng)寬高的正方體的外接球,
∵該三棱錐外接球的半徑為$\sqrt{3}$,
∴正方體的體對(duì)角線長(zhǎng)為2$\sqrt{3}$,
∴球心到平面ABC的距離為$\frac{1}{2}×\frac{2\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$
∴點(diǎn)Q到平面ABC的距離的最大值為$\sqrt{3}$+$\frac{\sqrt{3}}{3}$=$\frac{{4\sqrt{3}}}{3}$.
故答案為:$\frac{{4\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題考查點(diǎn)Q到平面ABC的距離的最大值,考查學(xué)生的計(jì)算能力,求出球心到平面ABC的距離是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.曲線y=x3+x-3在點(diǎn)P處的切線垂直于直線y=-$\frac{1}{4}$x-1,則此切線方程為4x-y-5=0或4x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),則|$\overrightarrow{a}$+$\overrightarrow$|=(  )
A.0B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,三棱柱ABC-A1BC1的底面是邊長(zhǎng)為2的正三角形,側(cè)棱A1A⊥底面ABC,D為A1A的中點(diǎn).
(Ⅰ)求證:平面B1DC⊥平面B1BCC1;
(Ⅱ)若∠B1DC=90°,求點(diǎn)A到平面B1DC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,M為側(cè)棱PD的三等分點(diǎn)(靠近D點(diǎn)),O為AC,BD的交點(diǎn),且PO⊥面ABCD,PO=$\sqrt{6}$.
(1)若在棱PD上存在一點(diǎn)N,且BN∥面AMC,確定點(diǎn)N的位置,并說(shuō)明理由;
(2)求點(diǎn)B到平面MAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過(guò)右焦點(diǎn)F且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為1,過(guò)點(diǎn)(m,0)(0<m<a)的直線與橢圓交于A,B兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn) P($\frac{4}{m}$,0)作垂直于x軸的直線l,在直線l上是否存在點(diǎn)Q,使得△ABQ為等邊三角形?若存在,試求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖1,在直角梯形EFBC中,F(xiàn)B∥EC,BF⊥EF,且EF=$\frac{1}{2}$FB=$\frac{1}{3}$EC=1,A為線段FB的中點(diǎn),AD⊥EC于D,沿邊AD將四邊形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn),如圖2.
(I)求證:BC⊥平面EDB;
(Ⅱ)求點(diǎn)M到平面BEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為$\sqrt{3}$x+y=0,則其離心率e=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.橢圓$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=10,則S${\;}_{△P{F}_{1}{F}_{2}}$=24.

查看答案和解析>>

同步練習(xí)冊(cè)答案