【題目】在直角坐標(biāo)系xoy中圓C的參數(shù)方程為
(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
.
(1)求圓C的直角坐標(biāo)方程及其圓心C的直角坐標(biāo);
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△ABC的面積.
【答案】
(1)解:圓C:
(α為參數(shù))得圓C的直角坐標(biāo)方程:(x﹣2)2+y2=9,
圓心C的直角坐標(biāo)C(2,0)
(2)解:1°.直線l的極坐標(biāo)方程為
.
可得:直線l的直角坐標(biāo)方程:x﹣y=0;
2°.圓心C(2,0)到直線l的距離
,圓C的半徑r=3,
弦長(zhǎng)
.)
3°.△ABC的面積= ![]()
【解析】(1)利用三角函數(shù)的基本關(guān)系式,轉(zhuǎn)化圓的參數(shù)方程為普通方程,然后求出圓的圓心坐標(biāo);(2)求出直線方程,利用圓心到直線的距離、半徑、半弦長(zhǎng),滿足勾股定理,求出寫出,然后求解三角形的面積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了展示中華漢字的無(wú)窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國(guó)漢字聽寫大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫出莖葉圖,如圖所示(把頻率當(dāng)作概率).
![]()
(1)求甲、乙兩人成績(jī)的平均數(shù)和中位數(shù);
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時(shí),f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方f(x)程f(x)+2=f(
)的實(shí)數(shù)x為 ( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為
,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2θ﹣2cosθ=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)的近3年的前7個(gè)月的月利潤(rùn)(單位:百萬(wàn)元)如下面的折線圖所示: ![]()
(1)試問(wèn)這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)較高?
(2)通過(guò)計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);
(3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測(cè)第3年8月份的利潤(rùn).
月份x | 1 | 2 | 3 | 4 |
利潤(rùn)y(單位:百萬(wàn)元) | 4 | 4 | 6 | 6 |
相關(guān)公式:
=
=
,
=
﹣
x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,正確的有__________.
①如果
、
與平面
共面且
,
,那么
就是平面
的一個(gè)法向量;
②設(shè)
:實(shí)數(shù)
,
滿足
;
:實(shí)數(shù)
,
滿足
則
是
的充分不必要條件;
③已知橢圓
與雙曲線
的焦點(diǎn)重合,
,
分別為
,
的離心率,則
,且
;
④菱形是圓的內(nèi)接四邊形或是圓的外切四邊形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且
= ![]()
(1)求A
(2)求cosB+cosC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(x+
)n的展開式中各項(xiàng)的系數(shù)之和為81,且常數(shù)項(xiàng)為a,則直線y=
x與曲線y=x2所圍成的封閉區(qū)域面積為 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com