在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,得曲線
的極坐標(biāo)方程為
(
)
(Ⅰ)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)直線
:
(
為參數(shù))過曲線
與
軸負(fù)半軸的交點(diǎn),求與直線
平行且與曲線
相切的直線方程
(Ⅰ)
、
;(Ⅱ)
或
解析試題分析:(Ⅰ) 利用參數(shù)方程化普通方程、極坐標(biāo)方程化直角坐標(biāo)方程來求;(Ⅱ)利用點(diǎn)到直線的距離來求
試題解析:(Ⅰ)曲線
的普通方程為:
; 2分
由
得
,
∴曲線
的直角坐標(biāo)方程為:
4分
(或:曲線
的直角坐標(biāo)方程為:
)
(Ⅱ)曲線
:
與
軸負(fù)半軸的交點(diǎn)坐標(biāo)為
,
又直線
的參數(shù)方程為:
,∴
,得
,
即直線
的參數(shù)方程為:![]()
得直線
的普通方程為:
, 6分
設(shè)與直線
平行且與曲線
相切的直線方程為:
7分
∵曲線
是圓心為
,半徑為
的圓,
得
,解得
或
9分
故所求切線方程為:
或
10分
考點(diǎn):參數(shù)方程化普通方程、極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查學(xué)生分析問題、解決問題的能力
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線
上的動(dòng)點(diǎn)
是坐標(biāo)為
.
(1)求曲線
的普通方程,并指出曲線的類型及焦點(diǎn)坐標(biāo);
(2)過點(diǎn)
作曲線
的兩條切線
、
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(
為參數(shù)),直線
經(jīng)過定點(diǎn)P(3,5),傾斜角為
(1)寫出直線
的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)直線
與曲線C相交于A、B兩點(diǎn),求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的參數(shù)方程是
(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是ρ=2,正方形ABCD的頂點(diǎn)都在
上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為
.
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為
上任意一點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo),曲線
的極坐標(biāo)方程為
(其中
為常數(shù)).
(1)若曲線
與曲線
只有一個(gè)公共點(diǎn),求
的取值范圍;
(2)當(dāng)
時(shí),求曲線
上的點(diǎn)與曲線
上的點(diǎn)的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的參數(shù)方程為![]()
是參數(shù)
,
是曲線
與
軸正半軸的交點(diǎn).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn)
與曲線
只有一個(gè)公共點(diǎn)的直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(Ⅰ)將圓
的參數(shù)方程化為普通方程,將圓
的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓
、
是否相交,若相交,請(qǐng)求出公共弦的長;若不相交,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點(diǎn)的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的
、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程.
(Ⅱ)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),曲線C的參數(shù)方程為
(θ為參數(shù)).試求直線l和曲線C的普通方程,并求出它們的公共點(diǎn)的坐
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com