欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.“x>2“是“x2+2x-8>0“成立的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

分析 由x2+2x-8>0解得x>2,或x<-4.即可判斷出結論.

解答 解:由x2+2x-8>0解得x>2,或x<-4.
∴“x>2“是“x2+2x-8>0“成立的充分不必要條件.
故選:B.

點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C的中心在原點,焦點在x軸上,離心率等于$\frac{1}{2}$,它的一個短軸端點是(0,2$\sqrt{3}$).
(1)求橢圓C的方程;
(2)P(2,3)、Q(2,-3)是橢圓上兩點,A、B是橢圓位于直線PQ兩側的兩動點,
①若直線AB的斜率為$\frac{1}{2}$,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設AB是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸,若把AB給100等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點,則|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是101a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知點F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點,若橢圓上存在點P使得$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,則此橢圓的離心率的取值范圍是( 。
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{3}$,$\frac{1}{2}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$α∈(\frac{π}{2},π)$,且sin(π+α)=-$\frac{3}{5}$,則tanα=( 。
A.$-\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中.
(1)|$\overrightarrow{AC}$|=2,AD⊥BC于D,∠BAD=45°,∠DAC=60°,求$\overrightarrow{BD}$•$\overrightarrow{AC}$,$\overrightarrow{BA}$•$\overrightarrow{AC}$.
(2)如果(1)的條件下,△ABC中,PQ是以A為圓心,$\sqrt{2}$為半徑的圓的直徑,求$\overrightarrow{BP}•\overline{CQ}$的最大值,最小值,并指出取最大值,最小值時向量$\overrightarrow{PQ}$與$\overrightarrow{BC}$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,則目標函數(shù)z=x+3y的最小值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知實數(shù)a,b滿足|a|<2,|b|<2,證明:2|a+b|<|4+ab|;
(2)已知a>0,求證:$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$,過點F1且垂直于x軸的直線被橢圓截得的弦長為$\sqrt{2}$,
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,2)是否存在直線l與橢圓交于不同的A,B兩點.使OA⊥OB(O為坐標原點).若存在求直線方程,若不存在說明理由.

查看答案和解析>>

同步練習冊答案