欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.已知球的體積為36π,則該球主視圖的面積等于9π.

分析 由球的體積公式,可得半徑R=3,再由主視圖為圓,可得面積.

解答 解:球的體積為36π,
設(shè)球的半徑為R,可得$\frac{4}{3}$πR3=36π,
可得R=3,
該球主視圖為半徑為3的圓,
可得面積為πR2=9π.
故答案為:9π.

點評 本題考查球的體積公式,以及主視圖的形狀和面積求法,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.與直線x+2y-3=0垂直且過點P(2,3)的直線方程是(  )
A.2x-y-1=0B.2x-y+1=0C.x-2y-1=0D.x-2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某縣一中計劃把一塊邊長為20米的等邊三角形ABC的邊角地辟為植物新品種實驗基地,圖中DE需把基地分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥10),ED=y,試用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉輸水管道的位置,為了節(jié)約,則希望它最短,DE的位置應(yīng)該在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)該在哪里?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)f(x)=sinxcosx+$\sqrt{3}$cos2x,則f(x)的單調(diào)遞減區(qū)間是[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),當(dāng)0<x<2時,f(x)=2x,則 f(-$\frac{9}{2}$)+f(4)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線sinθ•x-y+1=0的傾斜角的取值范圍是( 。
A.[0,π)B.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$C.$[{0,\frac{π}{4}}]$D.$[{0,\frac{π}{4}}]∪({\frac{π}{2},π})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)命題p:若x,y∈R,x=y,$\frac{x}{y}$=1;命題q:若函數(shù)f(x)=ex,則對任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立.在命題①p∧q,②p∨q,③p∧¬q,④¬p∨q中,是真命題的是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)某科考試中,從甲、乙兩個班級各抽取10名同學(xué)的成績進行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.設(shè)甲、乙兩個班所抽取的10名同學(xué)成績方差分別為$S_甲^2$、$S_乙^2$,比較$S_甲^2$、$S_乙^2$的大。ㄖ苯訉懡Y(jié)果,不必寫過程);
(Ⅱ)設(shè)集合$A=\{y|y={x^2}-2x+\frac{1}{2}\}$,B={x|m+x2≤1,m<1},命題p:x∈A;命題q:x∈B,若p是q的必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某研究中心計劃研究S市中學(xué)生的視力情況是否存在區(qū)域差異和年級差異.由數(shù)據(jù)庫知S市城區(qū)和郊區(qū)的中學(xué)生人數(shù),如表1.
表1   S市中學(xué)生人數(shù)統(tǒng)計

人數(shù)    年級
區(qū)域
789101112
城區(qū)300002400020000160001250010000
郊區(qū)500044004000230022001800
現(xiàn)用分層抽樣的方法從全市中學(xué)生中抽取總量百分之一的樣本,進行了調(diào)查,得到近視的學(xué)生人數(shù)如表2.
表2   S市抽樣樣本中近視人數(shù)統(tǒng)計


人數(shù)   年級
區(qū)域
789101112
城區(qū)757276727574
郊區(qū)109158911
(Ⅰ)請你用獨立性檢驗方法來研究高二(11年級)學(xué)生的視力情況是否存在城鄉(xiāng)差異,填寫2×2列聯(lián)表,并判斷能否在犯錯誤概率不超過5%的前提下認(rèn)定“學(xué)生的近視情況與地區(qū)有關(guān)”.
附:
P(K2≥k00.50.40.250.150.10.050.0250.010.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
獨立性檢驗公式為:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)請你選擇合適的角度,處理表1和表2的數(shù)據(jù),列出所需的數(shù)據(jù)表,畫出散點圖,并根據(jù)散點圖判斷城區(qū)中學(xué)生的近視情況與年級是成正相關(guān)還是負(fù)相關(guān).

查看答案和解析>>

同步練習(xí)冊答案