分析 根據(jù)題意作出圖形,欲求球O的表面積,只須求球的半徑r.利用截面圓的性質(zhì)即可求出OO1,進(jìn)而求出底面ABC上的高SD,即可計(jì)算出三棱錐的體積,從而建立關(guān)于r的方程,即可求出r,從而解決問題.
解答
設(shè)球心為O,球的半徑r.過ABC三點(diǎn)的小圓的圓心為O1,則OO1⊥平面ABC,
作SD⊥平面ABC交CO1的延長(zhǎng)線與D.$\frac{2}{3}×\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{3}$,∴OO1=$\sqrt{{R}^{2}-\frac{1}{3}}$,
∴高SD=2OO1,
∵△ABC是邊長(zhǎng)為1的正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}$,∴V三棱錐S-ABC=$\frac{1}{3}×2\sqrt{{R}^{2}-\frac{1}{3}}×\frac{\sqrt{3}}{4}=\frac{\sqrt{2}}{6}$,
∴R=1.則球O的表面積為4π,
故答案為:4π.
點(diǎn)評(píng) 本題考查棱錐的體積,考查球內(nèi)接多面體,解題的關(guān)鍵是確定點(diǎn)S到面ABC的距離,屬于中檔題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 分組 | 頻數(shù) | 頻率 |
| [39.95,39.97) | 6 | P1 |
| [39.97,39.99) | 12 | 0.20 |
| [39.99,40.01) | a | 0.50 |
| [40.01,40.03) | b | P2 |
| 合計(jì) | n | 1.00 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com