【題目】如果函數(shù)f(x)=3sin(2x+φ)的圖象關(guān)于點(diǎn)(
,0)成中心對(duì)稱(|φ|<
),那么函數(shù)f(x)圖象的一條對(duì)稱軸是( )
A.x=﹣ ![]()
B.x= ![]()
C.x= ![]()
D.x= ![]()
【答案】B
【解析】解:∵函數(shù)f(x)=3sin(2x+φ)的圖象關(guān)于點(diǎn)(
,0)成中心對(duì)稱,
∴2×
+φ=kπ,k∈Z,解得:φ=kπ﹣
,k∈Z,
∵|φ|<
,
∴φ=
,可得:f(x)=3sin(2x+
),
∴令2x+
=kπ+
,k∈Z,可得:x=
+
,k∈Z,
∴當(dāng)k=0時(shí),可得函數(shù)的對(duì)稱軸為x=
.
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移
個(gè)單位長(zhǎng)度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象才能得出正確答案.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸,
、
分別是x軸、y軸正方向同向的單位向量,若向量
=x
+y
,則把有序數(shù)對(duì)(x,y)叫做向量
在坐標(biāo)系xOy中的坐標(biāo),在此坐標(biāo)系下,假設(shè)
=(﹣2,2
),
=(2,0),
=(5,﹣3
),則下列命題不正確的是( ) ![]()
A.
=(1,0)
B.|
|=2 ![]()
C.
∥ ![]()
D.
⊥ ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點(diǎn),且|MN|=
,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點(diǎn)到直線l的距離為
,若存在,求出c的范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,E為BC上的動(dòng)點(diǎn). ![]()
(1)當(dāng)E為BC的中點(diǎn)時(shí),求證:PE⊥DE;
(2)設(shè)PA=1,在線段BC上存在這樣的點(diǎn)E,使得二面角P﹣ED﹣A的平面角大小為
.試確定點(diǎn)E的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是檢測(cè)某種濃度的農(nóng)藥隨時(shí)間x(秒)滲入某種水果表皮深度y(微米)的一組結(jié)果.
時(shí)間x(秒) | 5 | 10 | 15 | 20 | 30 |
深度y(微米) | 6 | 10 | 10 | 13 | 16 |
(1)在規(guī)定的坐標(biāo)系中,畫(huà)出 x,y 的散點(diǎn)圖; ![]()
(2)求y與x之間的回歸方程,并預(yù)測(cè)40秒時(shí)的深度(回歸方程精確到小數(shù)點(diǎn)后兩位;預(yù)測(cè)結(jié)果精確到整數(shù)). 回歸方程:
=bx+a,其中
=
,a=
﹣b
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,其對(duì)稱軸為y軸(其中b,c為常數(shù)) (Ⅰ)求實(shí)數(shù)b的值;
(Ⅱ)記函數(shù)g(x)=f(x)﹣2,若函數(shù)g(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對(duì)任意c∈R成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π)
x | ﹣ |
|
|
|
|
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)請(qǐng)寫(xiě)出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0,
]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為
,若S3=a4+2,且a1 , a3 , a13成等比數(shù)列
(1)求{an}的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(x﹣
)﹣sin(x﹣
). (Ⅰ)判斷函數(shù)f(x)的奇偶性,并給出證明;
(Ⅱ)若θ為第一象限角,且f(θ+
)=
,求cos(2θ+
)的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com