欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.一幾何體的三視圖如圖所示,此該幾何體的體積是(  )
A.$\frac{π}{12}$a3B.$\frac{π}{8}$a3C.$\frac{π}{4}$a3D.$\frac{π}{2}$a3

分析 根據(jù)幾何體的三視圖,得出該幾何體是兩個(gè)圓錐體的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是兩個(gè)底面直徑為a,高為$\frac{a}{2}$的圓錐體的組合體,
它的體積是:2×$\frac{1}{3}$π×${(\frac{a}{2})}^{2}$×$\frac{a}{2}$=$\frac{π}{12}$a3
故選:A.

點(diǎn)評(píng) 本題考查了利用幾何體的三視圖求體積的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為了增強(qiáng)環(huán)保意識(shí),我校從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
優(yōu)秀非優(yōu)秀總計(jì)
男生402060
女生203050
總計(jì)6050110
(Ⅰ)試判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);
(Ⅱ)為參加市里舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,已知在環(huán)保測(cè)試中優(yōu)秀的同學(xué)通過(guò)預(yù)選賽的概率為$\frac{2}{3}$,現(xiàn)在環(huán)保測(cè)試中優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,若隨機(jī)變量X表示這3人中通過(guò)預(yù)選賽的人數(shù),求X的分布列與數(shù)學(xué)期望.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.4000.1000.0100.001
k0.4550.7082.7066.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如果$\overrightarrow{a}$=-$\frac{2}{3}$$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的關(guān)系是反向共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.式子($\sqrt{10}$)${\;}^{2-2lg\frac{4}{5}}$+2${\;}^{lo{g}_{4}(1-\sqrt{3})^{2}}$=$\sqrt{3}$+$\frac{23}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=16,AD=10,AA1=6,點(diǎn)P在棱C1D1上,且D1P=6.
(1)求三棱錐P-A1CD的體積;
(2)請(qǐng)作圖:經(jīng)過(guò)點(diǎn)P在上底面內(nèi)畫(huà)一條直線和PB垂直;
(3)請(qǐng)作圖:經(jīng)過(guò)點(diǎn)P作長(zhǎng)方體的一個(gè)截面,且截面圖形為正方形.(注意:要求寫(xiě)出作法,明確所作直線與棱的交點(diǎn)的位置,不需要給出證明過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖是某圓拱橋的示意圖,這個(gè)圓拱橋的水面跨度AB=24m,拱高OP=8m.問(wèn):為使寬為10m的船能從橋下順利通過(guò),應(yīng)如何限制船體及裝載的貨物在水面以上的高度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)y=f(x)的定義域?yàn)镮,如果存在[a,b]⊆I,使函數(shù)f(x)在[a,b]上的值域?yàn)閇ka,kb],k是正常數(shù),那么稱函數(shù)y=f(x),x∈I為閉函數(shù).
(Ⅰ)當(dāng)k=$\frac{1}{2}$時(shí),判斷函數(shù)f(x)=$\sqrt{x}$是否是閉函數(shù)?若是,則求出區(qū)間[a,b];
(Ⅱ)當(dāng)k=$\frac{1}{2}$時(shí).若函數(shù)f(x)=$\sqrt{x}$+t是閉函數(shù),求實(shí)數(shù)t的取值范圍;
(Ⅲ)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m是閉函數(shù)?若存在,求出實(shí)數(shù)m的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.當(dāng)x=$\frac{π}{4}$時(shí),函數(shù)f(x)=sin(x+φ)取得最小值,則函數(shù)y=f($\frac{3π}{4}$-x)的一個(gè)單調(diào)遞增區(qū)間是(  )
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長(zhǎng)軸為4,且過(guò)點(diǎn)$A(\sqrt{2},1)$
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)O為原點(diǎn),若點(diǎn)P在曲線C上,點(diǎn)Q在直線y=2上,且OP⊥OQ,試判斷直線PQ與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案