已知函數(shù)
是定義在
上的奇函數(shù),且
。
(1)求函數(shù)
的解析式;
(2)用單調(diào)性的定義證明
在
上是增函數(shù);
(3)解不等式
。
(1)
;(2)見(jiàn)解析;(3)
。
解析試題分析::(1)由
,知:b=0。又
,知:a=1;所以
。
(2)設(shè)
,則 ![]()
又
,
,
從而
,即![]()
所以
在
上是增函數(shù)。
(3)由題意知:
即為![]()
(2)知:
即為
,解得:![]()
又
,且
。
所以
,即
。
不等式解集為
。
考點(diǎn):本題考查奇偶性與單調(diào)性的綜合。
點(diǎn)評(píng):本題考查函數(shù)奇偶性與單調(diào)性的性質(zhì)應(yīng)用,著重考查學(xué)生對(duì)函數(shù)奇偶性的理、用定義證明單調(diào)性及解方程、解不等式組的能力,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)已知
為定義在
上的奇函數(shù),當(dāng)
時(shí),
;
(1)求
在
上的解析式;
(2)試判斷函數(shù)
在區(qū)間
上的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分10分)如圖,△OAB是邊長(zhǎng)為2的正三角形,記△OAB位于直線(xiàn)
左側(cè)的圖形的面積為
。試求函數(shù)
的解析式,并畫(huà)出函數(shù)
的圖象.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)若
,求
的值;
(2)若
的圖像與直線(xiàn)
相切于點(diǎn)
,求
的值;
(3)在(2)的條件下,求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)已知函數(shù)
=
,2≤
≤4
(1)求該函數(shù)的值域;
(2)若
對(duì)于
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù)
. ![]()
(1)是否存在實(shí)數(shù)
使函數(shù)f(x)為奇函數(shù)?證明你的結(jié)論;
(2)用單調(diào)性定義證明:不論
取任何實(shí)數(shù),函數(shù)f(x)在其定義域上都是增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù)![]()
(1)試證明
在
上為增函數(shù);
(2)當(dāng)
時(shí),求函數(shù)
的最值
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com