分析 易知20-1=0,從而可得f(x)=4(x-a)(x-3a)=0有且只有一個解,從而可得$\left\{\begin{array}{l}{a≥1}\\{3a<1}\end{array}\right.$或$\left\{\begin{array}{l}{3a≥1}\\{a<1}\end{array}\right.$,從而解得.
解答 解:當x<1時,f(x)=2x-1=0,
解得,x=0;
故當x≥1時,f(x)=4(x-a)(x-3a)=0有且只有一個解,
故$\left\{\begin{array}{l}{a≥1}\\{3a<1}\end{array}\right.$或$\left\{\begin{array}{l}{3a≥1}\\{a<1}\end{array}\right.$,
解得,$\frac{1}{3}$≤a<1;
故答案為:[$\frac{1}{3}$,1).
點評 本題考查了分類討論的思想應用及方程的根與函數(shù)的零點的關系應用.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0.16 | B. | 0.20 | C. | 0.35 | D. | 0.40 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a<b<c | B. | c<b<a | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com