欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.在矩形ABCD中,點(diǎn)M在線段BC上,點(diǎn)N在線段CD上,且AB=4,AD=2,MN=$\sqrt{5}$,則$\overrightarrow{AM}$•$\overrightarrow{AN}$的最小值是10.

分析 先以$\overrightarrow{AB}$所在的直線為x軸,以$\overrightarrow{AD}$所在的直線為x軸,建立坐標(biāo)系,寫出要用的點(diǎn)的坐標(biāo),根據(jù)兩個(gè)點(diǎn)的位置得到坐標(biāo)之間的關(guān)系,表示出兩個(gè)向量的數(shù)量積,根據(jù)MN=$\sqrt{5}$,再由三角換元,結(jié)合輔助角公式和正弦函數(shù)的值域,即要求得數(shù)量積的最小值.

解答 解:以$\overrightarrow{AB}$所在的直線為x軸,以$\overrightarrow{AD}$所在的直線為x軸,
建立坐標(biāo)系如圖,
∵AB=4,AD=2,
∴A(0,0),B(4,0),C(4,2),
D(0,2),
設(shè)M(4,b),N(c,2),
由MN=$\sqrt{5}$,可得(b-2)2+(c-4)2=5,
又$\overrightarrow{AM}$•$\overrightarrow{AN}$=2b+4c,
可令b=2+$\sqrt{5}$cosθ,c=4+$\sqrt{5}$sinθ,
即有2b+4c=20+2$\sqrt{5}$cosθ+4$\sqrt{5}$sinθ
=20+10sin(θ+α),
當(dāng)sin(θ+α)=-1時(shí),取得最小值,且為10,
故答案為:10.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)運(yùn)算,考查數(shù)形結(jié)合的思想方法,以及三角換元和正弦函數(shù)的值域的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知?jiǎng)狱c(diǎn)P(x,y)滿足$\sqrt{{x^2}+{{(y+3)}^2}}+\sqrt{{x^2}+{{(y-3)}^2}}=10$,則動(dòng)點(diǎn)P的軌跡是( 。
A.雙曲線B.橢圓C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求證:(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{3}^{4}}$)…(1+$\frac{1}{{n}^{4}}$)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(重點(diǎn)中學(xué)做)已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+1,(x<1)}\\{lnx,(x≥1)}\end{array}\right.$,若關(guān)于x的方程f(x)=ax有且僅有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知y=(m2+m-5)xm是冪函數(shù),且在第一象限是單調(diào)遞減的,則m的值為( 。
A.-3B.2C.-3或2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知正四棱錐底面邊長(zhǎng)為$4\sqrt{2}$,體積為32,則此四棱錐的側(cè)棱長(zhǎng)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“x2>1”是“x>1”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=\frac{{{2^x}+{2^{-x}}}}{2}$是(  )
A.奇函數(shù),在(0,+∞)是增函數(shù)B.奇函數(shù),在(0,+∞)是減函數(shù)
C.偶函數(shù),在(0,+∞)是增函數(shù)D.偶函數(shù),在(0,+∞)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$對(duì)于任意實(shí)數(shù)λ都有|$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$|≤|$\overrightarrow{{e}_{1}}$-λ$\overrightarrow{{e}_{2}}$|,則向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為120°.

查看答案和解析>>

同步練習(xí)冊(cè)答案