【題目】已知向量
=(1+sin2x,sinx﹣cosx),
=(1,sinx+cosx),函數(shù)f(x)= ![]()
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應(yīng)的x的集合.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,橢圓
:
的離心率為
,直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過原點的直線與橢圓
交于
,
兩點(
,
不是橢圓
的頂點),點
在橢圓
上,且
.直線
與
軸、
軸分別交于
,
兩點.設(shè)直線
,
的斜率分別為
,
,證明存在常數(shù)
使得
,并求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=a,其前n項和為Sn , 且滿足Sn+Sn﹣1=3n2+2n+4(n≥2),若對任意的n∈N* , an<an+1恒成立,則a的取值范圍是( )
A.(
,
)
B.(
,
)
C.(
,
)
D.(﹣∞,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考山東文數(shù)】已知橢圓C:
(a>b>0)的長軸長為4,焦距為2
.
(I)求橢圓C的方程;
![]()
(Ⅱ)過動點M(0,m)(m>0)的直線交x軸與點N,交C于點A,P(P在第一象限),且M是線段PN的中點.過點P作x軸的垂線交C于另一點Q,延長線QM交C于點B.
(i)設(shè)直線PM、QM的斜率分別為k、k',證明
為定值.
(ii)求直線AB的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=cos(2x+1)的圖象,只要將函數(shù)y=cos2x的圖象( )
A.向左平移1個單位
B.向右平移1個單位
C.向左平移
個單位
D.向右平移
個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考天津文數(shù)】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:
![]()
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用x,y計劃表示生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,圓
,經(jīng)過原點的兩直線
滿足
,且
交圓
于不同兩點交
,
圓
于不同兩點
,記
的斜率為![]()
(1)求
的取值范圍;
(2)若四邊形
為梯形,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得
,
=20,
=184,
=720.
(1)求家庭的月儲蓄y關(guān)于月收入x的線性回歸方程
;
(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
=
,
=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:任意兩個等邊三角形都是相似的.
①它的否定是_________________________________________________________;
②否命題是_____________________________________________________________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com