欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若函數(shù)是奇函數(shù),且函數(shù)f(2x+1)=sin(ωx)(0<ω<4)過g(x)圖象的對稱點(diǎn),則函數(shù)f(x)的周期為   
【答案】分析:由函數(shù)g(x+1)是奇函數(shù),根據(jù)奇函數(shù)的性質(zhì)可得函數(shù)關(guān)于原點(diǎn)對稱,進(jìn)而確定出g(x)對稱點(diǎn)為(-2,0),將(-2,0)代入f(2x+1)=sin(ωx),由ωx=kπ(k為整數(shù)),根據(jù)ω的范圍確定出ω的值,設(shè)t=2x+1,確定出f(t)的解析式,即為f(x)的解析式,利用周期公式即可求出函數(shù)f(x)的最小正周期.
解答:解:∵函數(shù)g(x+1)是奇函數(shù),
∴函數(shù)g(x+1)的對稱點(diǎn)為(0,0),
∴g(x)的對稱點(diǎn)為(-2,0),
∴f(2x+1)=sin(ωx)過(-2,0),
代入得:f(-3)=sin(-2ω)=-sin2ω=0,即sin2ω=0,
∴2ω=kπ(k∈Z),即ω=,又0<ω<4,
∴ω=π或ω=,
設(shè)t=2x+1,則x=,
∴f(t)=sin(t-),即f(x)=sin(x-),
∴T=4或8,
則f(x)的最小正周期是4.
故答案為:4
點(diǎn)評:此題考查了三角函數(shù)的周期性及其求法,涉及的知識有:函數(shù)的奇偶性的性質(zhì),函數(shù)解析式的確定,正弦函數(shù)的圖象與性質(zhì),其中得出g(x)圖象的對稱點(diǎn)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
④如果定義域?yàn)镽的函教f (x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市啟東中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案