欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
10.已知y=Acos(ωx+φ)的圖象過點P($\frac{π}{12},0$),圖象上與點P最近的一個頂點是Q($\frac{π}{3},3$)
(1)求函數的解析式;    
(2)求函數的單調減區(qū)間;   
(3)求使y≥0的x的取值范圍.

分析 (1)利用題意在求出A,通過周期求出ω,利用函數經過的特殊點求出φ,即可求函數的解析式;
(2)通過余弦函數的單調增區(qū)間直接求函數的單調遞減區(qū)間;
(3)利用余弦函數的值域,求使y≥0的x的取值范圍.

解答 解:(1)由函數圖象過一個頂點是($\frac{π}{3},3$)知A=3.
圖象過點P($\frac{π}{12},0$)圖象上與點P最近的一個頂點是Q($\frac{π}{3},3$).
所以 $\frac{T}{4}$=$\frac{π}{3}$-$\frac{π}{12}$=$\frac{π}{4}$,
∴T=π,ω=2.
將Q($\frac{π}{3}$,3)代入y=3cos(2x+φ),由余弦函數的圖象和性質可得:2×$\frac{π}{3}$+φ=2π,
得φ=$\frac{4π}{3}$.
∴函數解析式為y=3cos(2x+$\frac{4π}{3}$).(4分)
(2)由2kπ≤2x+$\frac{4π}{3}$≤2kπ+$\frac{π}{2}$. 
 函數的單調減區(qū)間:[kπ-$\frac{2π}{3}$,kπ-$\frac{5π}{12}$].k∈Z.(8分)
(3)因為y≥0,
所以3cos(2x+$\frac{4π}{3}$)≥0,
可得 2kπ-$\frac{π}{2}$≤2x+$\frac{4π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得:x∈[kπ-$\frac{11π}{12}$,kπ-$\frac{5π}{12}$].k∈Z.(12分)

點評 本題考查三角函數的解析式的求法,三角函數的基本性質的應用,考查計算能力,考查了數形結合思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

20.如圖,已知四棱柱ABCD-A1B1C1D1的底面是菱形,側棱AA1⊥底面ABCD,M是AC的中點,∠BAD=120°,AA1=AB.
(1)證明:MD1∥平面A1BC1;
(2)求直線MA1與平面A1BC1所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=$\frac{2kx}{{x}^{2}+6k}$(k>0)
(1)若f(x)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;
(2)若任意x≥3,使得f(x)<1恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=cos2(x-$\frac{π}{6}$)-cos2x,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求y=f(x)在區(qū)間$[{-\frac{π}{3},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.$2(\overrightarrow a-\overrightarrow b)-4(\overrightarrow a+\overrightarrow b)$=-2$\overrightarrow{a}$-6$\overrightarrow$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.兩圓相交于兩點(k,1)和(1,3),兩圓的圓心都在直線x-y+$\frac{c}{2}$=0上,則k+c=( 。
A.-1B.2C.3D.0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.計算1$\frac{1}{2}$$+2\frac{1}{4}$+3$\frac{1}{8}$+…$+8\frac{1}{{2}^{8}}$=( 。
A.37-$\frac{1}{{2}^{8}}$B.36C.36-$\frac{1}{{2}^{8}}$D.35

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.將ρ=2cosθ-4sinθ化為直角坐標方程x2+y2-2x+4y=0.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.圓C1:x2+( y-1)2=1和圓C2:(x-3)2+(y-4)2=25的位置關系為( 。
A.相交B.內切C.外切D.內含

查看答案和解析>>

同步練習冊答案