【題目】為了保障全國第四次經(jīng)濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記. 由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗. 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 10 | 50 |
個體經(jīng)營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有
的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機選擇 1 家企事業(yè)單位,3 家個體經(jīng)營戶作為普查對象,入戶登記順利的對象數(shù)記為
, 寫出
的分布列,并求
的期望值.
附:
| 0.10 | 0.010 | 0.001 |
| 2.706 | 6.635 | 10.828 |
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】
(1)分層抽樣,簡單隨機抽樣均可;(2)利用聯(lián)列表求出
,然后判斷即可;(3)推出
可取0,1,2,3,4.求解概率,然后求解分布列,得到期望即可.
(1)分層抽樣,簡單隨機抽樣(抽簽亦可).
(2)將列聯(lián)表中的數(shù)據(jù)代入公式計算得
,
所以,有
的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”.
(3)以頻率作為概率,從該小區(qū)隨機選擇1家企事業(yè)單位作為普查對象,入戶登記
順利的概率為
,隨機選擇1家個體經(jīng)營戶作為普查對象,入戶登記順利的概率為
.
可取0,1,2,3,4.
,
,
,
,
.
的分布列為:
| 0 | 1 | 2 | 3 | 4 |
| | | | | |
.
科目:高中數(shù)學 來源: 題型:
【題目】“水是生命之源”,但是據(jù)科學界統(tǒng)計可用淡水資源僅占地球儲水總量的
,全世界近
人口受到水荒的威脅.某市為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準
(噸):一位居民的月用水量不超過
的部分按平價收費,超出
的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(1)求直方圖中
的值;
(2)設(shè)該市有60萬居民,估計全市居民中月均用水量不低于2.5噸的人數(shù),并說明理由;
(3)若該市政府希望使
的居民每月的用水不按議價收費,估計
的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻率分布直方圖:
![]()
(1)求這1000件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)
和樣本方差
(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)
(2)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值
服從正態(tài)分布
,其中以
近似為樣本平均數(shù)
,
近似為樣本方差
.
(。├迷撜龖B(tài)分布,求
;
(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記
表示這100件產(chǎn)品中質(zhì)量指標值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求
.
附:
.若
,則
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱錐S
ABC中,
,O為BC的中點.
(1)求證:
面ABC;
(2)求異面直線
與AB所成角的余弦值;
(3)在線段
上是否存在一點
,使二面角
的平面角的余弦值為
;若存在,求
的值;若不存在,試說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.先把高二年級的
名學生編號:
到
,再從編號為
到
的學生中隨機抽取
名學生,其編號為
,然后抽取編號為
的學生,這種抽樣方法是分層抽樣法
B.線性回歸直線
不一定過樣本中心![]()
C.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)
的值越接近于![]()
D.若一組數(shù)據(jù)
,
,
,
的平均數(shù)是
,則該組數(shù)據(jù)的方差也是![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點
到定直線
:
的距離比到定點
的距離大2.
(1)求動點
的軌跡
的方程;
(2)在
軸正半軸上,是否存在某個確定的點
,過該點的動直線
與曲線
交于
,
兩點,使得
為定值.如果存在,求出點
坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
上一點
到焦點
的距離
.
(1)求拋物線
的方程;
(2)過點
引圓
的兩條切線
,切線
與拋物線
的另一交點分別為
,線段
中點的橫坐標記為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
的離心率為
,橢圓
:
經(jīng)過點
.
(1)求橢圓
的標準方程;
(2)設(shè)點
是橢圓
上的任意一點,射線
與橢圓
交于點
,過點
的直線
與橢圓
有且只有一個公共點,直線
與橢圓
交于
,
兩個相異點,證明:
面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】南北朝時期杰出的數(shù)學家祖沖之的兒子祖暅在數(shù)學上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現(xiàn)有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為
,圓柱體的體積為
,根據(jù)祖暅原理,可推斷圓柱體的高( )
A.有最小值
B.有最大值
C.有最小值
D.有最大值![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com