欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,若過點F且與斜率為正數(shù)的漸近線垂直的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(  )
A.(1,$\sqrt{2}$]B.(1,$\sqrt{2}$)C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

分析 雙曲線的離心率與漸近線的斜率有關(guān),只有b=a或b>a時,直線與雙曲線的右支有且只有一個交點,由此能求出雙曲線離心率的范圍.

解答 解:雙曲線的離心率與漸近線的斜率有關(guān),
當(dāng)b<a時,即該漸近線傾斜角小于45°時,交點在同一右支上,
當(dāng)a=b時,該漸近線傾斜角等于45°時,
該漸近線的垂線與另一條漸近線平行,與雙曲線的右支有且只有一個交點,雙曲線離心率e=$\sqrt{2}$
當(dāng)b>a時,即該漸近線傾斜角大于45°時,與雙曲線左右支相交,
∴雙曲線離心率e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$>$\sqrt{2}$,
故選:D.

點評 本題考查雙曲線的離心率的取值范圍的求法,是中檔題,解題時要注意雙曲線的漸近線的斜率的靈活運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且BC邊上的高為$\frac{\sqrt{3}}{6}$a,則$\frac{c}$+$\frac{c}$取得最大值時,內(nèi)角A的值為(  )
A.$\frac{π}{2}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.三角形的面積s=$\frac{1}{2}$(a+b+c)r,a,b,c為其邊長,r為內(nèi)切圓的半徑,利用類比法可以得出四面體的體積為( 。
A.V=$\frac{1}{3}$abc(a,b,c為地面邊長)
B.V=$\frac{1}{3}$sh(s為地面面積,h為四面體的高)
C.V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分別為四個面的面積,r為內(nèi)切球的半徑)
D.V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c為地面邊長,h為四面體的高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個頂點分別為A和B,且$\overrightarrow{AB}$與$\overrightarrow{n}$=(1,-$\frac{\sqrt{3}}{2}$)共線,若點O,F(xiàn)分別為橢圓C的中心和左焦點,點P為橢圓C上任意一點,且$\overrightarrow{OP}$•$\overrightarrow{FP}$的最大值為6,則橢圓C的長軸長為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}中,公差d>0,且滿足a2•a3=2,a1+a4=3,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)$_{n}={2}^{{a}_{n}}$,求數(shù)列{bn}的前n項之和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,則z=-3x+2y的最大值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:△ABC中,D是BC中點,則$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$);命題q:已知兩向量$\overrightarrow{a}$,$\overrightarrow$,若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=1,則|$\overrightarrow{a}$+$\overrightarrow$|=2.則下列命題中為真命題的是(  )
A.p∧qB.p∨qC.¬pD.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a-\frac{2}{{e}^{x}+1},x≥0}\\{\frac{2}{{e}^{x}+1}-\frac{3}{2},x<0}\end{array}\right.$  
(1)當(dāng)a=$\frac{1}{2}$時,判斷函f(x)的奇偶性,并說明理由;
(2)若函數(shù)f(x)在(0,+∞)內(nèi)有且只有一個零點,求實數(shù)α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在數(shù)列{an}中,a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n}$(n∈N+),試求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案