分析:(Ⅰ)由Sn+1=Sn+2an+1,可得an+1=2an+1,進(jìn)而可得{an+1}是以2為首項(xiàng),2為公比的等比數(shù)列,由此可求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)確定數(shù)列的通項(xiàng),利用錯(cuò)位相減法,可求數(shù)列{bn}的前n項(xiàng)和Tn.
解答:解:(Ⅰ)∵S
n+1=S
n+2a
n+1,∴a
n+1=2a
n+1
∴a
n+1+1=2(a
n+1)
∵a
1=1,∴a
1+1=2,∴{a
n+1}是以2為首項(xiàng),2為公比的等比數(shù)列
∴a
n+1=2
n∴a
n=2
n-1;
(Ⅱ)
bn==n•()n,
∴T
n=
1×+2×
()2+…+
n•()n①
∴
T
n=1×
()2+…+
(n-1)•()n+
n•()n+1②
①-②可得:
T
n=
+
()2+…+
()n-
n•()n+1=
-
n•()n+1=1-
()n-
n•()n+1∴T
n=2-
()n-1-
n•()n.
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng)與求和,考查錯(cuò)位相減法,正確運(yùn)用求和公式是關(guān)鍵.