【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1,
,若邊BC上一點(diǎn)D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為 .
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
是等邊三角形,
是
的中點(diǎn),
,二面角
的大小為
.![]()
(1)求證:平面
平面
;
(2)求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣
x2+
x+
,則
(
)的值為( )
A.2016
B.1008
C.504
D.2017
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)證明:
;
(2)若對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下面四個(gè)命題
p1:若復(fù)數(shù)z滿足
∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1=
;
p4:若復(fù)數(shù)z∈R,則
∈R.
其中的真命題為( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為1,
分別是棱
的中點(diǎn),過
的平面與棱
分別交于點(diǎn)
.設(shè)
,
.![]()
①四邊形
一定是菱形;②
平面
;③四邊形
的面積
在區(qū)間
上具有單調(diào)性;④四棱錐
的體積為定值.
以上結(jié)論正確的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=2x2-ln x在其定義域內(nèi)的一個(gè)子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( )
A.[1,+∞)
B.[1,2)
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù)
在
上的最大值與最小值的差為
,求
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)
,焦點(diǎn)在
軸上,離心率為
的橢圓過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與
軸的非負(fù)半軸交于點(diǎn)
,過點(diǎn)
作互相垂直的兩條直線,分別交橢圓于點(diǎn)
,
兩點(diǎn),連接
,求
的面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com