| A. | x=$\frac{π}{3}$ | B. | x=-$\frac{π}{6}$ | C. | x=-$\frac{π}{24}$ | D. | x=$\frac{11π}{24}$ |
分析 由題意根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得平移后的函數(shù)為y=cos(2x+$\frac{π}{3}$),再根據(jù)余弦函數(shù)的圖象的對(duì)稱性求得它的對(duì)稱軸方程,可得平移后的圖象與y軸距離最近的對(duì)稱軸方程.
解答 解:函數(shù)f(x)=sin(2x+$\frac{π}{3}$)所對(duì)應(yīng)的圖象向左平移$\frac{π}{4}$個(gè)單位后的圖象對(duì)應(yīng)的函數(shù)解析式為y=sin[2(x+$\frac{π}{4}$)+$\frac{π}{3}$]=cos(2x+$\frac{π}{3}$),
令2x+$\frac{π}{3}$=kπ,求得 x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈z,
可得與y軸距離最近的對(duì)稱軸方程為x=-$\frac{π}{6}$,
故選:B.
點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com