1或-2。
解析:令x=y=0得f(0)=-1;令x=y=-1,由f(-2)=-2得,f(-1)=-2,
又令x=1, y=-1可得f(1)=1,再令x=1,得f(y+1)=f(y)+y+2①,所以f(y+1)-f(y)=y+2,即y為正整數(shù)時(shí),f(y+1)-f(y)>0,由f(1)=1可知對(duì)一切正整數(shù)y,f(y)>0,因此y∈N*時(shí),f(y+1)=f(y)+y+2>y+1,即對(duì)一切大于1的正整數(shù)t,恒有f(t)>t,由①得f(3)=-1, f(4)=1。
下面證明:當(dāng)整數(shù)t≤-4時(shí),f(t)>0,因t≤-4,故-(t+2)>0,由①得:f(t)-f(t+1)=-(t+2)>0,
即f(-5)-f(-4)>0,f(-6)-f(-5)>0,……,f(t+1)-f(t+2)>0,f(t)-f(t+1)>0
相加得:f(t)-f(-4)>0,因?yàn)椋簍≤4,故f(t)>t。綜上所述:滿足f(t)=t的整數(shù)只有t=1或t=2。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 6 |
| 3 |
| x |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:044
判斷下列命題的真假:
(1)在平面直角坐標(biāo)系中,任意有序?qū)崝?shù)對(duì)(x,y)都對(duì)應(yīng)一點(diǎn)P;
(2)存在一個(gè)函數(shù),既是偶函數(shù)又是奇函數(shù);
(3)每一條線段的長(zhǎng)度都能用正有理數(shù)表示;
(4)存在一個(gè)實(shí)數(shù),使等式x2+x+8=0成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)在平面直角坐標(biāo)系中,任意有序?qū)崝?shù)對(duì)(x,y)都對(duì)應(yīng)一點(diǎn)P;
(2)存在一個(gè)函數(shù),既是偶函數(shù)又是奇函數(shù);
(3)每一條線段的長(zhǎng)度都能用正實(shí)數(shù)表示;
(4)存在一個(gè)實(shí)數(shù),使等式x2+x+8=0成立;
(5)有一個(gè)實(shí)數(shù)x,使x2+2x+3=0.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com