【題目】已知橢圓
:
的左、右焦點分別為
,
,且離心率為
,
為橢圓上任意一點,當
時,
的面積為1.
(1)求橢圓
的方程;
(2)已知點
是橢圓
上異于橢圓頂點的一點,延長直線
,
分別與橢圓交于點
,
,設直線
的斜率為
,直線
的斜率為
,求證:
為定值.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)設
由題
,由此求出
,可得橢圓
的方程;
(2)設
,
,
當直線
的斜率不存在時,可得
;
當直線
的斜率不存在時,同理可得
.
當直線
、
的斜率存在時,
,
設直線
的方程為
,則由
消去
通過運算可得
,同理可得
,由此得到直線
的斜率為
,
直線
的斜率為
,進而可得
.
試題解析:(1)設
由題
,
解得
,則
,
橢圓
的方程為
.
(2)設
,
,
當直線
的斜率不存在時,設
,則
,
直線
的方程為
代入
,可得
,
,
,則
,
直線
的斜率為
,直線
的斜率為
,
,
當直線
的斜率不存在時,同理可得
.
當直線
、
的斜率存在時,
,
設直線
的方程為
,則由
消去
可得:
,
又
,則
,代入上述方程可得
,
,則![]()
,
設直線
的方程為
,同理可得
,
直線
的斜率為
,
直線
的斜率為
,
.
所以,直線
與
的斜率之積為定值
,即
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
科目:高中數(shù)學 來源: 題型:
【題目】小王在某社交網(wǎng) 絡的朋友圈中,向在線的甲、乙、丙隨機發(fā)放紅包,每次發(fā)放1個.
(1)若小王發(fā)放5元的紅包2個,求甲恰得1個的概率;
(2)若小王發(fā)放3個紅包,其中5元的2個,10元的1個,記乙所得紅包的總錢數(shù)為X,求X的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}是等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求通項公式an;
(2)若數(shù)列{an}為遞增數(shù)列,令bn=an+1+an+2+an+3+an+4,求數(shù)列{
}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐
的底面
為直角梯形,
,
,
,
為正三角形.
![]()
(1)點
為棱
上一點,若
平面
,
,求實數(shù)
的值;
(2)求點B到平面SAD的距離.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)由
平面
,可證
,進而證得四邊形
為平行四邊形,根據(jù)
,可得
;
(2)利用等體積法
可求點
到平面
的距離.
試題解析:((1)因為
平面SDM,
![]()
平面ABCD,
平面SDM
平面ABCD=DM,
所以
,
因為
,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點.
因為
,
.
![]()
(2)因為
,
,
所以
平面
,
又因為
平面
,
所以平面
平面
,
平面
平面
,
在平面
內(nèi)過點
作
直線
于點
,則
平面
,
在
和
中,
因為
,所以
,
又由題知
,
所以
,
由已知求得
,所以
,
連接BD,則
,
又求得
的面積為
,
所以由
點B 到平面
的距離為
.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪
(單位:元)與送貨單數(shù)
的函數(shù)關系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問題:
①根據(jù)以上數(shù)據(jù),設每名派送員的日薪為
(單位:元),試分別求出這100天中甲、乙兩種方案的日薪
平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù):
,
,
,
,
,
,
,
,
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在
ABC中,a、b是方程x2-2
x+2=0的兩根,且2cos(A+B)=-1.
(1)求角C的度數(shù);
(2)求c;
(3)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汕尾市基礎教育處為調(diào)查在校中學生每天放學后的自學時間情況,在本市的所有中學生中隨機抽取了120名學生進行調(diào)查,現(xiàn)將日均自學時間小于1小時的學生稱為“自學不足”者
根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下
列聯(lián)表,已知在調(diào)查對象中隨機抽取1人,為“自學不足”的概率為
.
非自學不足 | 自學不足 | 合計 | |
配有智能手機 | 30 | ||
沒有智能手機 | 10 | ||
合計 |
請完成上面的列聯(lián)表;
根據(jù)列聯(lián)表的數(shù)據(jù),能否有
的把握認為“自學不足”與“配有智能手機”有關?
附表及公式:
,其中![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M的圓心在直線
:
上,與直線
:
相切,截直線
:
所得的弦長為6.
(1)求圓M的方程;
(2)過點
的兩條成
角的直線分別交圓M于A,C和B,D,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列
的公比
,前
項和為
,且滿足
.
,
,
分別是一個等差數(shù)列的第1項,第2項,第5項.
(1)求數(shù)列
的通項公式;
(2)設
,求數(shù)列
的前
項和
;
(3)若
,
的前
項和為
,且對任意的
滿足
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐
中,
,且
平面
,
為棱
的中點.
![]()
(1)求證:
∥平面
;
(2)求證:平面
平面
;
(3)當四面體
的體積最大時,判斷直線
與直線
是否垂直,并說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com