(本小題滿分12分)如圖,四棱錐
的底面是正方形,
,點E在棱PB上.![]()
![]()
![]()
(Ⅰ)求證:平面
;
(Ⅱ)當
且E為PB的中點時,求AE與平面PDB所成的角的大小.
![]()
(I)見解析(Ⅱ)![]()
本題主要考查直線和平面垂直、平面與平面垂直、直線與平面所成的角等基礎(chǔ)知識,考查空間想象能力、運算能力和推理論證能力.
(Ⅰ)∵四邊形ABCD是正方形,∴AC⊥BD,
∵
,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面
.
(Ⅱ)設(shè)AC∩BD=O,連接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO為AE與平面PDB所的角,
∴O,E分別為DB、PB的中點,
∴OE//PD,
,又∵
,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,
,
∴
,即AE與平面PDB所成的角的大小為
.
【解法2】如圖,以D為原點建立空間直角坐標系
,![]()
![]()
![]()
設(shè)![]()
則
,
(Ⅰ)∵
,
∴
,
∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,
∴平面
.
(Ⅱ)當
且E為PB的中點時,
,
設(shè)AC∩BD=O,連接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO為AE與平面PDB所的角,
∵
,
∴
,
∴
,即AE與平面PDB所成的角的大小為
.
科目:高中數(shù)學 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com