分析 (1)由$\frac{{S}_{n}}{{a}_{n}}$=$\frac{1}{3}$n+r,a1=2,可得r.于是Sn=$\frac{n+2}{3}{a}_{n}$,利用遞推關(guān)系可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n-1}$,再利用“累乘求積”即可得出.
(2)bn=$\frac{1}{{a}_{2n-1}}$=$\frac{1}{(2n-1)(2n-1+1)}$≥$\frac{2}{(3n-2)(3n+1)}$=$\frac{2}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$.利用“裂項(xiàng)求和”即可得出.
解答 (1)解:∵$\frac{{S}_{n}}{{a}_{n}}$=$\frac{1}{3}$n+r,a1=2,
∴$\frac{{a}_{1}}{{a}_{1}}$=$\frac{1}{3}$+r=1,解得r=$\frac{2}{3}$.
∴Sn=$\frac{n+2}{3}{a}_{n}$,
當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{n+2}{3}{a}_{n}$-$\frac{n+1}{3}{a}_{n-1}$,
化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n-1}$,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$…$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n+1}{n-1}•\frac{n}{n-2}$$•\frac{n-1}{n-3}$•…•$\frac{4}{2}$$•\frac{3}{1}$•2=n(n+1),
當(dāng)n=1時(shí)也成立,
∴an=n(n+1).
(2)證明:bn=$\frac{1}{{a}_{2n-1}}$=$\frac{1}{(2n-1)(2n-1+1)}$≥$\frac{2}{(3n-2)(3n+1)}$=$\frac{2}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$.
≥$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和為Tn≥$\frac{2}{3}$$[(1-\frac{1}{4})+(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$
=$\frac{2}{3}$$(1-\frac{1}{3n+1})$=$\frac{2n}{3n+1}$.
∴Tn≥$\frac{2n}{3n+1}$.
點(diǎn)評 本題考查了遞推關(guān)系、“累乘求積”、“裂項(xiàng)求和”、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{23}{9}$ | B. | 1 | C. | $\frac{8}{9}$ | D. | -$\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-2,0)或(5,0) | B. | (8,9)或(10,0) | C. | (-2,0)或(8,0) | D. | (0,0)或(10,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com