欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.定義在R上的函數(shù)f(x)滿足:f(x)>1且f(x)+f′(x)>1,f(0)=5,其中f′(x)是f(x)的導(dǎo)函數(shù),則不等式ln[f(x)-1]>ln4-x的解集為(0,+∞).

分析 構(gòu)造函數(shù)g(x)=exf(x)-ex,(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解.

解答 解:不等式ln[f(x)-1]>ln4-x,
即為ln[f(x)-1]+lnex>ln4,
即ex(f(x)-1)>4,
設(shè)g(x)=exf(x)-ex,(x∈R),
則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調(diào)遞增,
∵exf(x)>ex+4,
∴g(x)>4,
又∵g(0)=e0f(0)-e0=5-1=4,
∴g(x)>g(0),
∴x>0,
∴不等式的解集為(0,+∞)
故答案為:(0,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)與單調(diào)性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.長(zhǎng)方體的體積公式為V長(zhǎng)=Sh,柱體的體積公式為V=Sh,錐體的體積公式為V=$\frac{1}{3}$Sh.若給出原理“兩等高的幾何體,若被平行于底面的平面所截的截面積相等,則這兩個(gè)幾何體的體積相等”.試用上述知識(shí)解釋球的體積公式V球=$\frac{4}{3}$πR3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的首項(xiàng)a1=$\frac{1}{2}$,前n項(xiàng)和為Sn,且Sn=p-an
(Ⅰ)求P及{an}的通項(xiàng)公式;
(Ⅱ)對(duì)n∈N*,在an與an+1之間插入3n的數(shù),使得這3n+2項(xiàng)成等差數(shù)列,記插入的3n個(gè)數(shù)之和為bn,令cn=$\frac{4}{3}$nbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.甲、乙兩位同學(xué)玩猜數(shù)字游戲:
(1)給出四個(gè)數(shù)字0,1,2,5,先由甲將這四個(gè)數(shù)字組成一個(gè)四位數(shù),然后由乙來(lái)猜甲的四位數(shù)是多少,求乙猜對(duì)的概率;
(2)甲先從1,2,3,4,5,6這六個(gè)數(shù)中任選出兩個(gè)數(shù)(不考慮先后順序),然后由乙來(lái)猜.若乙至少答對(duì)一個(gè)數(shù)則乙贏,否則甲贏.問(wèn)這種游戲規(guī)則公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a3+a5=26,S4=28,則a10的值為37.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-5≥0}\\{y-3≤0}\end{array}\right.$,若不等式m(x2+y2)≤(x+y)2恒成立,則實(shí)數(shù)m的最大值是$\frac{25}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x≤4}\\{|x-6|,x>4}\end{array}\right.$,若方程f(x)=kx+1有三個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。
A.(-$\frac{1}{6}$,$\frac{1}{4}$)B.(-∞,-$\frac{1}{6}$)∪($\frac{1}{4}$,+∞)C.[-$\frac{1}{6}$,$\frac{1}{4}$)D.(-$\frac{1}{6}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知圓C:x2+y2-6y+8=0,若直線y=kx與圓C相切,且切點(diǎn)在第二象限,則實(shí)數(shù)k=-2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案