欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=x2-2ax+a.
(1)當a=1時,求函數(shù)f(x)在[0,3]上的值域;
(2)是否存在實數(shù)a,使函數(shù)f(x)=x2-2ax+a的定義域為[-1,1],值域為[-2,2]?若存在,求出a的值;若不存在,說明理由.
分析:(1)由題意可得,f(x)=(x-1)2,根據(jù)定義域為[0,3],f(x)在[0,1)上單調(diào)減,在(1,3]上單調(diào)增,求得函數(shù)的值域.
(2)由條件可得二次函數(shù)的對稱軸為x=a,分當a≥1時、當0≤a<1時、當-1≤a<0時三種情況,根據(jù)定義域為[-1,1],值域為[-2,2],分別利用二次函數(shù)的性質(zhì)求得a的值.
解答:解:(1)∵函數(shù)f(x)=x2-2ax+a,a=1,∴f(x)=(x-1)2,
∵x∈[0,3],∴f(x)在[0,1)上單調(diào)減,在(1,3]上單調(diào)增,
∴最小值為f(1)=0,而 f(0)=1 f(3)=4,
∴函數(shù)的值域為[0,4].
(2)當a≥1時,由于f(x)在[-1,1]上是減函數(shù),可得
f(-1)=2
f(1)=-2
,故有
a=
1
3
a=3
(舍去).
當0≤a<1時,由
f(1)=2
f(a)=-2
,即
1+2a+a=2
a-a2=-2
 (舍去).
當-1≤a<0時,由
f(1)=2
f(a)=-2
,即
1-2a+a=2
a-a2=-2
,求得a=-1.
當a<-1時,由
f(-1)=-2
f(1)=2
,求得
1+2a+a=-2
1-2a+a=2
,解得a=-1(舍去).
綜上所述:a=-1.
點評:本題主要考查求二次函數(shù)在閉區(qū)間上的最值,函數(shù)的定義域和單調(diào)性的應用,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案