分析 (1)由正弦定理化簡(jiǎn)已知等式可得2sinCcosA=sinC,又sinC≠0,即可得cosA=$\frac{1}{2}$,即可求得A的大小.
(2)由正弦定理可得:$b=\frac{asinB}{sinA}=\frac{2}{{\sqrt{3}}}sinB$,$c=\frac{2}{{\sqrt{3}}}sinC$,可求$l=a+b+c=1+\frac{2}{{\sqrt{3}}}(sinB+sinC)$=$1+2sin(B+\frac{π}{6})$.又$B∈(0,\frac{2}{3}π)$,利用正弦函數(shù)的圖象和性質(zhì)即可得解.
另解:由余弦定理及不等式的解法得1=b2+c2-bc${(b+c)^2}=1+3bc≤1+3{(\frac{b+c}{2})^2}$,化簡(jiǎn)得b+c≤2,又△ABC的周長(zhǎng)l=a+b+c=1+b+c,從而得解.
解答 解:(1)∵$\frac{2c-b}{a}$=$\frac{cosB}{cosA}$,(2c-b)cosA=acosB,
∵$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,
∴(2sinC-sinB)cosA=sinAcosB,
∴2sinCcosA-sinBcosA=sinAcosB,
∴2sinCcosA=sin(A+B)=sinC,
在△ABC中,sinC≠0.
∴cosA=$\frac{1}{2}$,$∠A=\frac{π}{3}$. …(5分)
(2)$b=\frac{asinB}{sinA}=\frac{2}{{\sqrt{3}}}sinB$,$c=\frac{2}{{\sqrt{3}}}sinC$,…(6分)
∴$l=a+b+c=1+\frac{2}{{\sqrt{3}}}(sinB+sinC)$=$1+\frac{2}{{\sqrt{3}}}(sinB+sin(A+B))$=$1+2(\frac{{\sqrt{3}}}{2}sinB+\frac{1}{2}cosB)$=$1+2sin(B+\frac{π}{6})$. …(8分)
又$B∈(0,\frac{2}{3}π)$,∴$B+\frac{π}{6}∈(\frac{π}{6},\frac{5}{6}π)$,∴$sin(B+\frac{π}{6})∈(\frac{1}{2},1]$,…(9分)
∴l(xiāng)∈(2,3],故△ABC周長(zhǎng)的最大值3,…(10分)
另解:a2=b2+c2-2bccosA得1=b2+c2-bc${(b+c)^2}=1+3bc≤1+3{(\frac{b+c}{2})^2}$,
化簡(jiǎn)得b+c≤2,又△ABC的周長(zhǎng)l=a+b+c=1+b+c.
故△ABC周長(zhǎng)的最大值3.,…(10分)
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,正弦函數(shù)的圖象和性質(zhì),考查了基本不等式的應(yīng)用,屬于基本知識(shí)的考查.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{2\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 銳角三角形 | B. | 鈍角三角形 | ||
| C. | 直角三角形 | D. | 鈍角三角形或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | an=(-1)n$\frac{{2}^{n}+1}{{2}^{n}}$ | B. | an=(-1)n$\frac{2n+1}{{2}^{n}}$ | ||
| C. | an=(-1)n+1$\frac{{2}^{n}+1}{{2}^{n}}$ | D. | an=(-1)n+1$\frac{2n+1}{{2}^{n}}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com