【題目】從拋物線C:
(
)外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)
在拋物線C上,且
(F為拋物線的焦點(diǎn)).
(1)求拋物線C的方程;
(2)①求證:四邊形
是平行四邊形.
②四邊形
能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.
【答案】(1)
;(2)①證明見解析;②能,
.
【解析】
(1)根據(jù)拋物線的定義,求出
,即可求拋物線C的方程;
(2)①設(shè)
,
,寫出切線
的方程,解方程組求出點(diǎn)
的坐標(biāo). 設(shè)點(diǎn)
,直線AB的方程
,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)
的坐標(biāo),寫出點(diǎn)
的坐標(biāo),,可得線段
相互平分,即證四邊形
是平行四邊形;②若四邊形
為矩形,則
,求出
,即得點(diǎn)Q的坐標(biāo).
(1)因?yàn)?/span>
,所以
,即拋物線C的方程是
.
(2)①證明:由
得
,
.設(shè)
,
,
則直線PA的方程為
(。
則直線PB的方程為
(ⅱ),
由(。┖停áⅲ┙獾茫
,
,所以
.
設(shè)點(diǎn)
,則直線AB的方程為
.
由
得
,則
,
,
所以
,所以線段PQ被x軸平分,即被線段CD平分.
在①中,令
解得
,所以
,同理得
,所以線段CD的中點(diǎn)坐標(biāo)為
,即
,又因?yàn)橹本PQ的方程為
,所以線段CD的中點(diǎn)
在直線PQ上,即線段CD被線段PQ平分.
因此,四邊形
是平行四邊形.
②由①知,四邊形
是平行四邊形.
若四邊形
是矩形,則
,即
,
解得
,故當(dāng)點(diǎn)Q為
,即為拋物線的焦點(diǎn)時,四邊形
是矩形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求出函數(shù)
的單調(diào)區(qū)間及最大值;
(2)若
且
,求函數(shù)
在
上的最大值
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(m為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
,直線
與曲線C交于M,N兩點(diǎn).
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用
模式,其中語文、數(shù)學(xué)、外語三科為必考科目,每門科目滿分均為
分.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物
門科目中自選
門參加考試(
選
),每門科目滿分均為
分.為了應(yīng)對新高考,某高中從高一年級
名學(xué)生(其中男生
人,女生
人)中,采用分層抽樣的方法從中抽取
名學(xué)生進(jìn)行調(diào)查,其中,女生抽取
人.
(1)求
的值;
(2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對抽取到的
名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在“物理”和“地理”這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調(diào)查結(jié)果得到的一個不完整的
列聯(lián)表,請將下面的
列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 |
| ||
女生 |
| ||
總計(jì) |
(3)在抽取到的
名女生中,按(2)中的選課情況進(jìn)行分層抽樣,從中抽出
名女生,再從這
名女生中抽取
人,設(shè)這
人中選擇“物理”的人數(shù)為
,求
的分布列及期望.附:
,![]()
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( ).
①在
中,若
,則
是等腰三角形;
②在
中,若
,則![]()
③兩個向量
,
共線的充要條件是存在實(shí)數(shù)
,使![]()
④等差數(shù)列的前
項(xiàng)和公式是常數(shù)項(xiàng)為0的二次函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
點(diǎn)的極坐標(biāo)為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出點(diǎn)
的直角坐標(biāo)及曲線
的直角坐標(biāo)方程;
(2)若
為曲線
上的動點(diǎn),求
的中點(diǎn)
到直線
:
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)求l和C的直角坐標(biāo)方程.
(2)設(shè)點(diǎn)
,直線l交曲線C于A,B兩點(diǎn),求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com