分析 利用分離常數(shù)法,求出a的不等式,構(gòu)造函數(shù)g(x),求出g(x)的取值范圍即得a的取值范圍.
解答 解:當(dāng)x∈(0,+∞)時(shí),f(x)>ax2-1恒成立,
∴x+$\frac{1}{{e}^{x}}$>ax2-1,
即a<$\frac{1}{x}$+$\frac{1}{{x}^{2}{e}^{x}}$+$\frac{1}{{x}^{2}}$,
設(shè)g(x)=$\frac{1}{x}$+$\frac{1}{{x}^{2}{e}^{x}}$+$\frac{1}{{x}^{2}}$,其中x>0,
∴g′(x)=-$\frac{1}{{x}^{2}}$-$\frac{x+2}{{x}^{3}{e}^{x}}$-$\frac{2}{{x}^{3}}$<0在x>0恒成立,
g(x)在(0,+∞)上是單調(diào)減函數(shù);
∴g(x)>0,即a≤0;
∴實(shí)數(shù)a的取值范圍是(-∞,0].
點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)與應(yīng)用問題,也考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,不等式恒成立問題注意轉(zhuǎn)化為求函數(shù)的最值問題,是綜合性題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (3,0) | B. | (1,3) | C. | (0,3) | D. | (0,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-2,+∞) | B. | (1,2] | C. | (-2,1) | D. | (-2,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {2} | B. | {2,4} | C. | {0,4} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{3}{4}$ | B. | -$\frac{9}{16}$ | C. | -$\frac{4}{3}$ | D. | -$\frac{16}{9}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com